情绪唤醒模式(EMAP):一个新的数据库,用于模拟对情感刺激的瞬时主观和心理生理反应。

Psychophysiology Pub Date : 2024-02-01 Epub Date: 2023-09-19 DOI:10.1111/psyp.14446
Hedwig Eisenbarth, Matt Oxner, Harisu Abdullahi Shehu, Tim Gastrell, Amy Walsh, Will N Browne, Bing Xue
{"title":"情绪唤醒模式(EMAP):一个新的数据库,用于模拟对情感刺激的瞬时主观和心理生理反应。","authors":"Hedwig Eisenbarth, Matt Oxner, Harisu Abdullahi Shehu, Tim Gastrell, Amy Walsh, Will N Browne, Bing Xue","doi":"10.1111/psyp.14446","DOIUrl":null,"url":null,"abstract":"<p><p>This article describes a new database (named \"EMAP\") of 145 individuals' reactions to emotion-provoking film clips. It includes electroencephalographic and peripheral physiological data as well as moment-by-moment ratings for emotional arousal in addition to overall and categorical ratings. The resulting variation in continuous ratings reflects inter-individual variability in emotional responding. To make use of the moment-by-moment data for ratings as well as neurophysiological activity, we used a machine learning approach. The results show that algorithms that are based on temporal information improve predictions compared to algorithms without a temporal component, both within and across participant modeling. Although predicting moment-by-moment changes in emotional experiences by analyzing neurophysiological activity was more difficult than using aggregated experience ratings, selecting a subset of predictors improved the prediction. This also showed that not only single features, for example, skin conductance, but a range of neurophysiological parameters explain variation in subjective fluctuations of subjective experience.</p>","PeriodicalId":94182,"journal":{"name":"Psychophysiology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Emotional arousal pattern (EMAP): A new database for modeling momentary subjective and psychophysiological responding to affective stimuli.\",\"authors\":\"Hedwig Eisenbarth, Matt Oxner, Harisu Abdullahi Shehu, Tim Gastrell, Amy Walsh, Will N Browne, Bing Xue\",\"doi\":\"10.1111/psyp.14446\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This article describes a new database (named \\\"EMAP\\\") of 145 individuals' reactions to emotion-provoking film clips. It includes electroencephalographic and peripheral physiological data as well as moment-by-moment ratings for emotional arousal in addition to overall and categorical ratings. The resulting variation in continuous ratings reflects inter-individual variability in emotional responding. To make use of the moment-by-moment data for ratings as well as neurophysiological activity, we used a machine learning approach. The results show that algorithms that are based on temporal information improve predictions compared to algorithms without a temporal component, both within and across participant modeling. Although predicting moment-by-moment changes in emotional experiences by analyzing neurophysiological activity was more difficult than using aggregated experience ratings, selecting a subset of predictors improved the prediction. This also showed that not only single features, for example, skin conductance, but a range of neurophysiological parameters explain variation in subjective fluctuations of subjective experience.</p>\",\"PeriodicalId\":94182,\"journal\":{\"name\":\"Psychophysiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Psychophysiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1111/psyp.14446\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychophysiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/psyp.14446","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/19 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文描述了一个新的数据库(名为“EMAP”),其中包含145个人对激动人心的电影片段的反应。除了总体和分类评级外,它还包括脑电图和外周生理数据,以及情绪唤醒的逐时评级。由此产生的连续评分变化反映了情绪反应的个体间差异。为了利用逐时刻的数据进行评分和神经生理学活动,我们使用了机器学习方法。结果表明,与没有时间分量的算法相比,基于时间信息的算法改进了预测,无论是在参与者建模内部还是跨参与者建模。尽管通过分析神经生理学活动来预测情绪体验的每时每刻的变化比使用综合体验评级更困难,但选择一个子集的预测因子可以改进预测。这也表明,不仅单个特征,例如皮肤电导,而且一系列神经生理学参数可以解释主观体验主观波动的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Emotional arousal pattern (EMAP): A new database for modeling momentary subjective and psychophysiological responding to affective stimuli.

This article describes a new database (named "EMAP") of 145 individuals' reactions to emotion-provoking film clips. It includes electroencephalographic and peripheral physiological data as well as moment-by-moment ratings for emotional arousal in addition to overall and categorical ratings. The resulting variation in continuous ratings reflects inter-individual variability in emotional responding. To make use of the moment-by-moment data for ratings as well as neurophysiological activity, we used a machine learning approach. The results show that algorithms that are based on temporal information improve predictions compared to algorithms without a temporal component, both within and across participant modeling. Although predicting moment-by-moment changes in emotional experiences by analyzing neurophysiological activity was more difficult than using aggregated experience ratings, selecting a subset of predictors improved the prediction. This also showed that not only single features, for example, skin conductance, but a range of neurophysiological parameters explain variation in subjective fluctuations of subjective experience.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
How effort-based self-interest motivation shapes altruistic donation behavior and brain responses. Beyond peaks and troughs: Multiplexed performance monitoring signals in the EEG. Reduced reward responsiveness and depression vulnerability: Consideration of social contexts and implications for intervention. Moving toward reality: Electrocortical reactivity to naturalistic multimodal emotional videos. Mapping the routes of perception: Hemispheric asymmetries in signal propagation dynamics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1