Hasanga D Manikpurage, Audrey Paulin, Arnaud Girard, Aida Eslami, Patrick Mathieu, Sébastien Thériault, Benoit J Arsenault
{"title":"脂蛋白(a)对冠心病多基因风险预测的贡献:英国生物库前瞻性分析。","authors":"Hasanga D Manikpurage, Audrey Paulin, Arnaud Girard, Aida Eslami, Patrick Mathieu, Sébastien Thériault, Benoit J Arsenault","doi":"10.1161/CIRCGEN.123.004137","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Lp(a) (lipoprotein[a]) is a highly atherogenic lipoprotein subfraction that may contribute to polygenic risk of coronary artery disease (CAD), but the extent of this contribution is unknown. Our objective was to estimate the contribution of Lp(a) to polygenic risk of CAD and to evaluate the respective contributions of Lp(a) and a CAD polygenic risk score (PRS) to CAD.</p><p><strong>Methods: </strong>A total of 372 385 UK Biobank participants of European ancestry free of CAD at baseline were included. Plasma Lp(a) levels were measured and a CAD-PRS was calculated using the LDpred2 algorithm. Over the median follow-up of 12.6 years, 13 538 participants had incident CAD (myocardial infarction, coronary artery bypass grafting, or coronary angioplasty).</p><p><strong>Results: </strong>The <i>LPA</i> region contribution to the CAD-PRS-mediated CAD risk was modest (7.2% [95% CI, 6.1-8.3]). Lp(a) levels significantly increased the predictive performance of a CAD-PRS including age and sex in Cox regression (C statistic 0.751 versus 0.746, difference, 0.005 [95% CI, 0.004-0.006]). Compared with participants in the bottom CAD-PRS quintile with Lp(a) levels <25 nmol/L (CAD event rate, 1.4%), the hazard ratio for incident CAD in participants in the top CAD-PRS quintile with Lp(a) levels ≥125 nmol/L was 5.45 (95% CI, 4.93-6.03; <i>P</i>=9.35×10<sup>-242</sup>, CAD event rate 6.6%).</p><p><strong>Conclusions: </strong>Compared with individuals with a low genetic risk of CAD (low CAD-PRS and low Lp[a] levels), those with a high genetic risk (high CAD-PRS and high Lp[a] levels) had a 5-fold higher CAD risk. These results highlight a substantial contribution of genetic risk factors to CAD and that accurate estimation of genetic risk of CAD may need to consider blood levels of Lp(a).</p>","PeriodicalId":10326,"journal":{"name":"Circulation: Genomic and Precision Medicine","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Contribution of Lipoprotein(a) to Polygenic Risk Prediction of Coronary Artery Disease: A Prospective UK Biobank Analysis.\",\"authors\":\"Hasanga D Manikpurage, Audrey Paulin, Arnaud Girard, Aida Eslami, Patrick Mathieu, Sébastien Thériault, Benoit J Arsenault\",\"doi\":\"10.1161/CIRCGEN.123.004137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Lp(a) (lipoprotein[a]) is a highly atherogenic lipoprotein subfraction that may contribute to polygenic risk of coronary artery disease (CAD), but the extent of this contribution is unknown. Our objective was to estimate the contribution of Lp(a) to polygenic risk of CAD and to evaluate the respective contributions of Lp(a) and a CAD polygenic risk score (PRS) to CAD.</p><p><strong>Methods: </strong>A total of 372 385 UK Biobank participants of European ancestry free of CAD at baseline were included. Plasma Lp(a) levels were measured and a CAD-PRS was calculated using the LDpred2 algorithm. Over the median follow-up of 12.6 years, 13 538 participants had incident CAD (myocardial infarction, coronary artery bypass grafting, or coronary angioplasty).</p><p><strong>Results: </strong>The <i>LPA</i> region contribution to the CAD-PRS-mediated CAD risk was modest (7.2% [95% CI, 6.1-8.3]). Lp(a) levels significantly increased the predictive performance of a CAD-PRS including age and sex in Cox regression (C statistic 0.751 versus 0.746, difference, 0.005 [95% CI, 0.004-0.006]). Compared with participants in the bottom CAD-PRS quintile with Lp(a) levels <25 nmol/L (CAD event rate, 1.4%), the hazard ratio for incident CAD in participants in the top CAD-PRS quintile with Lp(a) levels ≥125 nmol/L was 5.45 (95% CI, 4.93-6.03; <i>P</i>=9.35×10<sup>-242</sup>, CAD event rate 6.6%).</p><p><strong>Conclusions: </strong>Compared with individuals with a low genetic risk of CAD (low CAD-PRS and low Lp[a] levels), those with a high genetic risk (high CAD-PRS and high Lp[a] levels) had a 5-fold higher CAD risk. These results highlight a substantial contribution of genetic risk factors to CAD and that accurate estimation of genetic risk of CAD may need to consider blood levels of Lp(a).</p>\",\"PeriodicalId\":10326,\"journal\":{\"name\":\"Circulation: Genomic and Precision Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Circulation: Genomic and Precision Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1161/CIRCGEN.123.004137\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circulation: Genomic and Precision Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1161/CIRCGEN.123.004137","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Contribution of Lipoprotein(a) to Polygenic Risk Prediction of Coronary Artery Disease: A Prospective UK Biobank Analysis.
Background: Lp(a) (lipoprotein[a]) is a highly atherogenic lipoprotein subfraction that may contribute to polygenic risk of coronary artery disease (CAD), but the extent of this contribution is unknown. Our objective was to estimate the contribution of Lp(a) to polygenic risk of CAD and to evaluate the respective contributions of Lp(a) and a CAD polygenic risk score (PRS) to CAD.
Methods: A total of 372 385 UK Biobank participants of European ancestry free of CAD at baseline were included. Plasma Lp(a) levels were measured and a CAD-PRS was calculated using the LDpred2 algorithm. Over the median follow-up of 12.6 years, 13 538 participants had incident CAD (myocardial infarction, coronary artery bypass grafting, or coronary angioplasty).
Results: The LPA region contribution to the CAD-PRS-mediated CAD risk was modest (7.2% [95% CI, 6.1-8.3]). Lp(a) levels significantly increased the predictive performance of a CAD-PRS including age and sex in Cox regression (C statistic 0.751 versus 0.746, difference, 0.005 [95% CI, 0.004-0.006]). Compared with participants in the bottom CAD-PRS quintile with Lp(a) levels <25 nmol/L (CAD event rate, 1.4%), the hazard ratio for incident CAD in participants in the top CAD-PRS quintile with Lp(a) levels ≥125 nmol/L was 5.45 (95% CI, 4.93-6.03; P=9.35×10-242, CAD event rate 6.6%).
Conclusions: Compared with individuals with a low genetic risk of CAD (low CAD-PRS and low Lp[a] levels), those with a high genetic risk (high CAD-PRS and high Lp[a] levels) had a 5-fold higher CAD risk. These results highlight a substantial contribution of genetic risk factors to CAD and that accurate estimation of genetic risk of CAD may need to consider blood levels of Lp(a).
期刊介绍:
Circulation: Genomic and Precision Medicine is a distinguished journal dedicated to advancing the frontiers of cardiovascular genomics and precision medicine. It publishes a diverse array of original research articles that delve into the genetic and molecular underpinnings of cardiovascular diseases. The journal's scope is broad, encompassing studies from human subjects to laboratory models, and from in vitro experiments to computational simulations.
Circulation: Genomic and Precision Medicine is committed to publishing studies that have direct relevance to human cardiovascular biology and disease, with the ultimate goal of improving patient care and outcomes. The journal serves as a platform for researchers to share their groundbreaking work, fostering collaboration and innovation in the field of cardiovascular genomics and precision medicine.