{"title":"用麦秆纤维素基质原位封端银纳米粒子以增强其抗菌活性:合成和表征。","authors":"Shappo Tlou, Evans Suter, Mitema Alfred, Hilary Rutto, Wesley Omwoyo","doi":"10.1080/10934529.2023.2260295","DOIUrl":null,"url":null,"abstract":"<p><p>Silver nanoparticles have gained worldwide attention in the scientific community due to their high antimicrobial activity. However, they tend to agglomerate and lose their shape and properties, thus capping agents necessary to protect their shapes, sizes, and properties. To enhance their antimicrobial activity, this research aimed to cap silver nanoparticles with cellulosic matrices from wheat straws. The wheat straw was delignified with 6% HNO<sub>3,</sub> and the residual was treated with 1% NaOH and NaClO: CH<sub>3</sub>COOH (1:1), then used to synthesize cellulose nanocrystals <i>via</i> acid hydrolysis. AgNPs were incorporated into the CPC and CNCs by in-situ synthesis using NaHB<sub>4</sub> as the reducing agent. Fourier Transform Infrared, Scanning Electron Microscopy, and X-ray diffraction were used to investigate their features. The findings exhibited crystallinity increased with subsequent treatments, according to XRD analysis. Ultraviolet-visible, FTIR, TEM, and XRD analysis confirmed the capping of AgNPs onto the cellulosic materials. Antibacterial activity against <i>Staphylococcus aureus</i> and <i>Escherichia coli,</i> with CNCs-AgNPs composite, exhibited higher activity compared to CPC-AgNPs composite due to the increased surface area and excellent binding on the surface of the composite.</p>","PeriodicalId":15671,"journal":{"name":"Journal of Environmental Science and Health Part A-toxic\\/hazardous Substances & Environmental Engineering","volume":" ","pages":"903-913"},"PeriodicalIF":1.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In situ capping of silver nanoparticles with cellulosic matrices from wheat straws in enhancing their antimicrobial activity: Synthesis and characterization.\",\"authors\":\"Shappo Tlou, Evans Suter, Mitema Alfred, Hilary Rutto, Wesley Omwoyo\",\"doi\":\"10.1080/10934529.2023.2260295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Silver nanoparticles have gained worldwide attention in the scientific community due to their high antimicrobial activity. However, they tend to agglomerate and lose their shape and properties, thus capping agents necessary to protect their shapes, sizes, and properties. To enhance their antimicrobial activity, this research aimed to cap silver nanoparticles with cellulosic matrices from wheat straws. The wheat straw was delignified with 6% HNO<sub>3,</sub> and the residual was treated with 1% NaOH and NaClO: CH<sub>3</sub>COOH (1:1), then used to synthesize cellulose nanocrystals <i>via</i> acid hydrolysis. AgNPs were incorporated into the CPC and CNCs by in-situ synthesis using NaHB<sub>4</sub> as the reducing agent. Fourier Transform Infrared, Scanning Electron Microscopy, and X-ray diffraction were used to investigate their features. The findings exhibited crystallinity increased with subsequent treatments, according to XRD analysis. Ultraviolet-visible, FTIR, TEM, and XRD analysis confirmed the capping of AgNPs onto the cellulosic materials. Antibacterial activity against <i>Staphylococcus aureus</i> and <i>Escherichia coli,</i> with CNCs-AgNPs composite, exhibited higher activity compared to CPC-AgNPs composite due to the increased surface area and excellent binding on the surface of the composite.</p>\",\"PeriodicalId\":15671,\"journal\":{\"name\":\"Journal of Environmental Science and Health Part A-toxic\\\\/hazardous Substances & Environmental Engineering\",\"volume\":\" \",\"pages\":\"903-913\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Science and Health Part A-toxic\\\\/hazardous Substances & Environmental Engineering\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/10934529.2023.2260295\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/10/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Science and Health Part A-toxic\\/hazardous Substances & Environmental Engineering","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/10934529.2023.2260295","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/12 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
In situ capping of silver nanoparticles with cellulosic matrices from wheat straws in enhancing their antimicrobial activity: Synthesis and characterization.
Silver nanoparticles have gained worldwide attention in the scientific community due to their high antimicrobial activity. However, they tend to agglomerate and lose their shape and properties, thus capping agents necessary to protect their shapes, sizes, and properties. To enhance their antimicrobial activity, this research aimed to cap silver nanoparticles with cellulosic matrices from wheat straws. The wheat straw was delignified with 6% HNO3, and the residual was treated with 1% NaOH and NaClO: CH3COOH (1:1), then used to synthesize cellulose nanocrystals via acid hydrolysis. AgNPs were incorporated into the CPC and CNCs by in-situ synthesis using NaHB4 as the reducing agent. Fourier Transform Infrared, Scanning Electron Microscopy, and X-ray diffraction were used to investigate their features. The findings exhibited crystallinity increased with subsequent treatments, according to XRD analysis. Ultraviolet-visible, FTIR, TEM, and XRD analysis confirmed the capping of AgNPs onto the cellulosic materials. Antibacterial activity against Staphylococcus aureus and Escherichia coli, with CNCs-AgNPs composite, exhibited higher activity compared to CPC-AgNPs composite due to the increased surface area and excellent binding on the surface of the composite.
期刊介绍:
14 issues per year
Abstracted/indexed in: BioSciences Information Service of Biological Abstracts (BIOSIS), CAB ABSTRACTS, CEABA, Chemical Abstracts & Chemical Safety NewsBase, Current Contents/Agriculture, Biology, and Environmental Sciences, Elsevier BIOBASE/Current Awareness in Biological Sciences, EMBASE/Excerpta Medica, Engineering Index/COMPENDEX PLUS, Environment Abstracts, Environmental Periodicals Bibliography & INIST-Pascal/CNRS, National Agriculture Library-AGRICOLA, NIOSHTIC & Pollution Abstracts, PubSCIENCE, Reference Update, Research Alert & Science Citation Index Expanded (SCIE), Water Resources Abstracts and Index Medicus/MEDLINE.