{"title":"仿生介孔聚多巴胺纳米颗粒的亚急性毒性及其潜在机制。","authors":"Bang-Yao Chen, Si-Ying Hong, Han-Min Wang, Yi Shi, Peng Wang, Xiao-Juan Wang, Qian-Yang Jiang, Ke-Da Yang, Wei Chen, Xiao-Ling Xu","doi":"10.1186/s12989-023-00548-4","DOIUrl":null,"url":null,"abstract":"<p><p>Recently, mesoporous nanomaterials with widespread applications have attracted great interest in the field of drug delivery due to their unique structure and good physiochemical properties. As a biomimetic nanomaterial, mesoporous polydopamine (MPDA) possesses both a superior nature and good compatibility, endowing it with good clinical transformation prospects compared with other inorganic mesoporous nanocarriers. However, the subacute toxicity and underlying mechanisms of biomimetic mesoporous polydopamine nanoparticles remain uncertain. Herein, we prepared MPDAs by a soft template method and evaluated their primary physiochemical properties and metabolite toxicity, as well as potential mechanisms. The results demonstrated that MPDA injection at low (3.61 mg/kg) and medium doses (10.87 mg/kg) did not significantly change the body weight, organ index or routine blood parameters. In contrast, high-dose MPDA injection (78.57 mg/kg) is associated with disturbances in the gut microbiota, activation of inflammatory pathways through the abnormal metabolism of bile acids and unsaturated fatty acids, and potential oxidative stress injury. In sum, the MPDA dose applied should be controlled during the treatment. This study first provides a systematic evaluation of metabolite toxicity and related mechanisms for MPDA-based nanoparticles, filling the gap between their research and clinical transformation as a drug delivery nanoplatform.</p>","PeriodicalId":19847,"journal":{"name":"Particle and Fibre Toxicology","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2023-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10560437/pdf/","citationCount":"0","resultStr":"{\"title\":\"The subacute toxicity and underlying mechanisms of biomimetic mesoporous polydopamine nanoparticles.\",\"authors\":\"Bang-Yao Chen, Si-Ying Hong, Han-Min Wang, Yi Shi, Peng Wang, Xiao-Juan Wang, Qian-Yang Jiang, Ke-Da Yang, Wei Chen, Xiao-Ling Xu\",\"doi\":\"10.1186/s12989-023-00548-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recently, mesoporous nanomaterials with widespread applications have attracted great interest in the field of drug delivery due to their unique structure and good physiochemical properties. As a biomimetic nanomaterial, mesoporous polydopamine (MPDA) possesses both a superior nature and good compatibility, endowing it with good clinical transformation prospects compared with other inorganic mesoporous nanocarriers. However, the subacute toxicity and underlying mechanisms of biomimetic mesoporous polydopamine nanoparticles remain uncertain. Herein, we prepared MPDAs by a soft template method and evaluated their primary physiochemical properties and metabolite toxicity, as well as potential mechanisms. The results demonstrated that MPDA injection at low (3.61 mg/kg) and medium doses (10.87 mg/kg) did not significantly change the body weight, organ index or routine blood parameters. In contrast, high-dose MPDA injection (78.57 mg/kg) is associated with disturbances in the gut microbiota, activation of inflammatory pathways through the abnormal metabolism of bile acids and unsaturated fatty acids, and potential oxidative stress injury. In sum, the MPDA dose applied should be controlled during the treatment. This study first provides a systematic evaluation of metabolite toxicity and related mechanisms for MPDA-based nanoparticles, filling the gap between their research and clinical transformation as a drug delivery nanoplatform.</p>\",\"PeriodicalId\":19847,\"journal\":{\"name\":\"Particle and Fibre Toxicology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2023-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10560437/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Particle and Fibre Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12989-023-00548-4\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particle and Fibre Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12989-023-00548-4","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TOXICOLOGY","Score":null,"Total":0}
The subacute toxicity and underlying mechanisms of biomimetic mesoporous polydopamine nanoparticles.
Recently, mesoporous nanomaterials with widespread applications have attracted great interest in the field of drug delivery due to their unique structure and good physiochemical properties. As a biomimetic nanomaterial, mesoporous polydopamine (MPDA) possesses both a superior nature and good compatibility, endowing it with good clinical transformation prospects compared with other inorganic mesoporous nanocarriers. However, the subacute toxicity and underlying mechanisms of biomimetic mesoporous polydopamine nanoparticles remain uncertain. Herein, we prepared MPDAs by a soft template method and evaluated their primary physiochemical properties and metabolite toxicity, as well as potential mechanisms. The results demonstrated that MPDA injection at low (3.61 mg/kg) and medium doses (10.87 mg/kg) did not significantly change the body weight, organ index or routine blood parameters. In contrast, high-dose MPDA injection (78.57 mg/kg) is associated with disturbances in the gut microbiota, activation of inflammatory pathways through the abnormal metabolism of bile acids and unsaturated fatty acids, and potential oxidative stress injury. In sum, the MPDA dose applied should be controlled during the treatment. This study first provides a systematic evaluation of metabolite toxicity and related mechanisms for MPDA-based nanoparticles, filling the gap between their research and clinical transformation as a drug delivery nanoplatform.
期刊介绍:
Particle and Fibre Toxicology is an online journal that is open access and peer-reviewed. It covers a range of disciplines such as material science, biomaterials, and nanomedicine, focusing on the toxicological effects of particles and fibres. The journal serves as a platform for scientific debate and communication among toxicologists and scientists from different fields who work with particle and fibre materials. The main objective of the journal is to deepen our understanding of the physico-chemical properties of particles, their potential for human exposure, and the resulting biological effects. It also addresses regulatory issues related to particle exposure in workplaces and the general environment. Moreover, the journal recognizes that there are various situations where particles can pose a toxicological threat, such as the use of old materials in new applications or the introduction of new materials altogether. By encompassing all these disciplines, Particle and Fibre Toxicology provides a comprehensive source for research in this field.