优化外周血单核细胞处理以提高临床ELISpot测定性能。

IF 5 3区 医学 Q1 PHARMACOLOGY & PHARMACY AAPS Journal Pub Date : 2023-09-28 DOI:10.1208/s12248-023-00861-y
Xinyuan Li, Shan He, Jaya Thomas, Bonnie Wu, Tong-Yuan Yang, Michael Swanson
{"title":"优化外周血单核细胞处理以提高临床ELISpot测定性能。","authors":"Xinyuan Li, Shan He, Jaya Thomas, Bonnie Wu, Tong-Yuan Yang, Michael Swanson","doi":"10.1208/s12248-023-00861-y","DOIUrl":null,"url":null,"abstract":"<p><p>Cell and gene therapies have demonstrated impressive therapeutic efficacy in various human diseases. Nevertheless, cellular immune response directed against these therapeutic agents is an obstacle for achieving long-lasting clinical efficacy. Therefore, it is crucial to develop robust assays to accurately monitor cellular immunogenicity towards these therapies. Enzyme-linked immunospot (ELISpot) assay is one of the primarily used methods for measuring cellular immune response in clinical programs, which requires isolation of the peripheral blood mononuclear cells (PBMCs). The quality of this clinical material is one of the most critical factors that impact the robust assessment of cellular immune responses. The optimal blood sample processing conditions, however, remain poorly understood. In this study, we examined the impact of blood sample processing time on the performance characteristics of ELISpot to measure antigen-specific cellular responses. Blood samples that were processed after overnight delay resulted in a loss of ELISpot signals. We subsequently optimized several parameters of sample processing, and successfully recovered ELISpot signals for the blood samples that are processed within 32 h. Furthermore, several mitigation strategies were employed that would potentially address the impact of granulocyte contamination on detection of antigen-specific cellular responses. Our investigation provides an extension of sample processing window for clinical studies and is significant for resolving the logistical challenge of whole blood sample shipment for timely PBMC preparation in cell/gene therapy clinical studies.</p>","PeriodicalId":50934,"journal":{"name":"AAPS Journal","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of Peripheral Blood Mononuclear Cell Processing for Improved Clinical ELISpot Assay Performance.\",\"authors\":\"Xinyuan Li, Shan He, Jaya Thomas, Bonnie Wu, Tong-Yuan Yang, Michael Swanson\",\"doi\":\"10.1208/s12248-023-00861-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cell and gene therapies have demonstrated impressive therapeutic efficacy in various human diseases. Nevertheless, cellular immune response directed against these therapeutic agents is an obstacle for achieving long-lasting clinical efficacy. Therefore, it is crucial to develop robust assays to accurately monitor cellular immunogenicity towards these therapies. Enzyme-linked immunospot (ELISpot) assay is one of the primarily used methods for measuring cellular immune response in clinical programs, which requires isolation of the peripheral blood mononuclear cells (PBMCs). The quality of this clinical material is one of the most critical factors that impact the robust assessment of cellular immune responses. The optimal blood sample processing conditions, however, remain poorly understood. In this study, we examined the impact of blood sample processing time on the performance characteristics of ELISpot to measure antigen-specific cellular responses. Blood samples that were processed after overnight delay resulted in a loss of ELISpot signals. We subsequently optimized several parameters of sample processing, and successfully recovered ELISpot signals for the blood samples that are processed within 32 h. Furthermore, several mitigation strategies were employed that would potentially address the impact of granulocyte contamination on detection of antigen-specific cellular responses. Our investigation provides an extension of sample processing window for clinical studies and is significant for resolving the logistical challenge of whole blood sample shipment for timely PBMC preparation in cell/gene therapy clinical studies.</p>\",\"PeriodicalId\":50934,\"journal\":{\"name\":\"AAPS Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2023-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AAPS Journal\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1208/s12248-023-00861-y\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AAPS Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1208/s12248-023-00861-y","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

细胞和基因疗法在各种人类疾病中显示出令人印象深刻的治疗效果。然而,针对这些治疗剂的细胞免疫反应是实现长期临床疗效的障碍。因此,开发可靠的检测方法来准确监测这些疗法的细胞免疫原性至关重要。酶联免疫斑点法(ELISpot)是临床项目中主要用于测量细胞免疫反应的方法之一,需要分离外周血单核细胞(PBMC)。这种临床材料的质量是影响细胞免疫反应稳健评估的最关键因素之一。然而,人们对最佳血液样本处理条件仍知之甚少。在这项研究中,我们检测了血样处理时间对ELISpot性能特征的影响,以测量抗原特异性细胞反应。延迟过夜后处理的血液样本导致ELISpot信号丢失。随后,我们优化了样本处理的几个参数,并成功恢复了在32小时内处理的血液样本的ELISpot信号。此外,采用了几种缓解策略,这些策略可能会解决粒细胞污染对抗原特异性细胞反应检测的影响。我们的研究为临床研究提供了样本处理窗口的扩展,对于解决细胞/基因治疗临床研究中及时制备PBMC的全血样本运输的后勤挑战具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimization of Peripheral Blood Mononuclear Cell Processing for Improved Clinical ELISpot Assay Performance.

Cell and gene therapies have demonstrated impressive therapeutic efficacy in various human diseases. Nevertheless, cellular immune response directed against these therapeutic agents is an obstacle for achieving long-lasting clinical efficacy. Therefore, it is crucial to develop robust assays to accurately monitor cellular immunogenicity towards these therapies. Enzyme-linked immunospot (ELISpot) assay is one of the primarily used methods for measuring cellular immune response in clinical programs, which requires isolation of the peripheral blood mononuclear cells (PBMCs). The quality of this clinical material is one of the most critical factors that impact the robust assessment of cellular immune responses. The optimal blood sample processing conditions, however, remain poorly understood. In this study, we examined the impact of blood sample processing time on the performance characteristics of ELISpot to measure antigen-specific cellular responses. Blood samples that were processed after overnight delay resulted in a loss of ELISpot signals. We subsequently optimized several parameters of sample processing, and successfully recovered ELISpot signals for the blood samples that are processed within 32 h. Furthermore, several mitigation strategies were employed that would potentially address the impact of granulocyte contamination on detection of antigen-specific cellular responses. Our investigation provides an extension of sample processing window for clinical studies and is significant for resolving the logistical challenge of whole blood sample shipment for timely PBMC preparation in cell/gene therapy clinical studies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AAPS Journal
AAPS Journal 医学-药学
CiteScore
7.80
自引率
4.40%
发文量
109
审稿时长
1 months
期刊介绍: The AAPS Journal, an official journal of the American Association of Pharmaceutical Scientists (AAPS), publishes novel and significant findings in the various areas of pharmaceutical sciences impacting human and veterinary therapeutics, including: · Drug Design and Discovery · Pharmaceutical Biotechnology · Biopharmaceutics, Formulation, and Drug Delivery · Metabolism and Transport · Pharmacokinetics, Pharmacodynamics, and Pharmacometrics · Translational Research · Clinical Evaluations and Therapeutic Outcomes · Regulatory Science We invite submissions under the following article types: · Original Research Articles · Reviews and Mini-reviews · White Papers, Commentaries, and Editorials · Meeting Reports · Brief/Technical Reports and Rapid Communications · Regulatory Notes · Tutorials · Protocols in the Pharmaceutical Sciences In addition, The AAPS Journal publishes themes, organized by guest editors, which are focused on particular areas of current interest to our field.
期刊最新文献
Assessing Immunogenicity in Drug Reviews and Prescribing Information in Japan. Temperature Excursion Management: A Tier-Based Approach for Commercial Oral Solid Dosage Forms. UGT2B10 is the Major UDP-Glucuronosyltransferase 2B Isoform Involved in the Metabolism of Lamotrigine and is Implicated in the Drug-Drug Interaction with Valproic Acid. A Risk-Based Assessment for Determining the Pharmacokinetic Comparability Requirements of Biologic-Device Combination Products Administered by Subcutaneous Injection. Correction to: Neutralizing Antibody Sample Testing and Report Harmonization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1