Mari Raudstein, Erik Kjærner-Semb, Morten Barvik, Silje Broll, Anne Hege Straume, Rolf Brudvik Edvardsen
{"title":"体内CRISPR/LbCas12a介导的大西洋鲑鱼(Salmo salar L.)的敲除和敲除。","authors":"Mari Raudstein, Erik Kjærner-Semb, Morten Barvik, Silje Broll, Anne Hege Straume, Rolf Brudvik Edvardsen","doi":"10.1007/s11248-023-00368-4","DOIUrl":null,"url":null,"abstract":"<p><p>Genome editing using the CRISPR/Cas system offers the potential to enhance current breeding programs and introduce desirable genetic traits, including disease resistance, in salmon aquaculture. Several nucleases are available using this system, displaying differences regarding structure, cleavage, and PAM requirement. Cas9 is well established in Atlantic salmon, but Cas12a has yet to be tested in vivo in this species. In the present work, we microinjected salmon embryos with LbCas12a ribonucleoprotein complexes targeting the pigmentation gene solute carrier family 45 member 2 (slc45a2). Using CRISPR/LbCas12a, we were able to knock-out slc45a2 and knock-in a FLAG sequence element by providing single-stranded DNA templates. High-throughput sequencing revealed perfect HDR rates up to 34.3% and 54.9% in individual larvae using either target or non-target strand template design, respectively. In this work, we demonstrate the in vivo application of CRISPR/LbCas12a in Atlantic salmon, expanding the toolbox for editing the genome of this important aquaculture species.</p>","PeriodicalId":23258,"journal":{"name":"Transgenic Research","volume":" ","pages":"513-521"},"PeriodicalIF":2.7000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10713776/pdf/","citationCount":"0","resultStr":"{\"title\":\"In vivo CRISPR/LbCas12a-mediated knock-in and knock-out in Atlantic salmon (Salmo salar L.).\",\"authors\":\"Mari Raudstein, Erik Kjærner-Semb, Morten Barvik, Silje Broll, Anne Hege Straume, Rolf Brudvik Edvardsen\",\"doi\":\"10.1007/s11248-023-00368-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Genome editing using the CRISPR/Cas system offers the potential to enhance current breeding programs and introduce desirable genetic traits, including disease resistance, in salmon aquaculture. Several nucleases are available using this system, displaying differences regarding structure, cleavage, and PAM requirement. Cas9 is well established in Atlantic salmon, but Cas12a has yet to be tested in vivo in this species. In the present work, we microinjected salmon embryos with LbCas12a ribonucleoprotein complexes targeting the pigmentation gene solute carrier family 45 member 2 (slc45a2). Using CRISPR/LbCas12a, we were able to knock-out slc45a2 and knock-in a FLAG sequence element by providing single-stranded DNA templates. High-throughput sequencing revealed perfect HDR rates up to 34.3% and 54.9% in individual larvae using either target or non-target strand template design, respectively. In this work, we demonstrate the in vivo application of CRISPR/LbCas12a in Atlantic salmon, expanding the toolbox for editing the genome of this important aquaculture species.</p>\",\"PeriodicalId\":23258,\"journal\":{\"name\":\"Transgenic Research\",\"volume\":\" \",\"pages\":\"513-521\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10713776/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transgenic Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11248-023-00368-4\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transgenic Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11248-023-00368-4","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/21 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
In vivo CRISPR/LbCas12a-mediated knock-in and knock-out in Atlantic salmon (Salmo salar L.).
Genome editing using the CRISPR/Cas system offers the potential to enhance current breeding programs and introduce desirable genetic traits, including disease resistance, in salmon aquaculture. Several nucleases are available using this system, displaying differences regarding structure, cleavage, and PAM requirement. Cas9 is well established in Atlantic salmon, but Cas12a has yet to be tested in vivo in this species. In the present work, we microinjected salmon embryos with LbCas12a ribonucleoprotein complexes targeting the pigmentation gene solute carrier family 45 member 2 (slc45a2). Using CRISPR/LbCas12a, we were able to knock-out slc45a2 and knock-in a FLAG sequence element by providing single-stranded DNA templates. High-throughput sequencing revealed perfect HDR rates up to 34.3% and 54.9% in individual larvae using either target or non-target strand template design, respectively. In this work, we demonstrate the in vivo application of CRISPR/LbCas12a in Atlantic salmon, expanding the toolbox for editing the genome of this important aquaculture species.
期刊介绍:
Transgenic Research focusses on transgenic and genome edited higher organisms. Manuscripts emphasizing biotechnological applications are strongly encouraged. Intellectual property, ethical issues, societal impact and regulatory aspects also fall within the scope of the journal. Transgenic Research aims to bridge the gap between fundamental and applied science in molecular biology and biotechnology for the plant and animal academic and associated industry communities.
Transgenic Research publishes
-Original Papers
-Reviews:
Should critically summarize the current state-of-the-art of the subject in a dispassionate way. Authors are requested to contact a Board Member before submission. Reviews should not be descriptive; rather they should present the most up-to-date information on the subject in a dispassionate and critical way. Perspective Reviews which can address new or controversial aspects are encouraged.
-Brief Communications:
Should report significant developments in methodology and experimental transgenic higher organisms