{"title":"基于损失修正变换器的U-Net用于视网膜疾病光学相干断层扫描图像中流体的精确分割。","authors":"Reza Darooei, Milad Nazari, Rahle Kafieh, Hossein Rabbani","doi":"10.4103/jmss.jmss_52_22","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Optical coherence tomography (OCT) imaging significantly contributes to ophthalmology in the diagnosis of retinal disorders such as age-related macular degeneration and diabetic macular edema. Both diseases involve the abnormal accumulation of fluids, location, and volume, which is vitally informative in detecting the severity of the diseases. Automated and accurate fluid segmentation in OCT images could potentially improve the current clinical diagnosis. This becomes more important by considering the limitations of manual fluid segmentation as a time-consuming and subjective to error method.</p><p><strong>Methods: </strong>Deep learning techniques have been applied to various image processing tasks, and their performance has already been explored in the segmentation of fluids in OCTs. This article suggests a novel automated deep learning method utilizing the U-Net structure as the basis. The modifications consist of the application of transformers in the encoder path of the U-Net with the purpose of more concentrated feature extraction. Furthermore, a custom loss function is empirically tailored to efficiently incorporate proper loss functions to deal with the imbalance and noisy images. A weighted combination of Dice loss, focal Tversky loss, and weighted binary cross-entropy is employed.</p><p><strong>Results: </strong>Different metrics are calculated. The results show high accuracy (Dice coefficient of 95.52) and robustness of the proposed method in comparison to different methods after adding extra noise to the images (Dice coefficient of 92.79).</p><p><strong>Conclusions: </strong>The segmentation of fluid regions in retinal OCT images is critical because it assists clinicians in diagnosing macular edema and executing therapeutic operations more quickly. This study suggests a deep learning framework and novel loss function for automated fluid segmentation of retinal OCT images with excellent accuracy and rapid convergence result.</p>","PeriodicalId":37680,"journal":{"name":"Journal of Medical Signals & Sensors","volume":"13 4","pages":"253-260"},"PeriodicalIF":1.3000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/2b/d1/JMSS-13-253.PMC10559298.pdf","citationCount":"0","resultStr":"{\"title\":\"Loss-Modified Transformer-Based U-Net for Accurate Segmentation of Fluids in Optical Coherence Tomography Images of Retinal Diseases.\",\"authors\":\"Reza Darooei, Milad Nazari, Rahle Kafieh, Hossein Rabbani\",\"doi\":\"10.4103/jmss.jmss_52_22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Optical coherence tomography (OCT) imaging significantly contributes to ophthalmology in the diagnosis of retinal disorders such as age-related macular degeneration and diabetic macular edema. Both diseases involve the abnormal accumulation of fluids, location, and volume, which is vitally informative in detecting the severity of the diseases. Automated and accurate fluid segmentation in OCT images could potentially improve the current clinical diagnosis. This becomes more important by considering the limitations of manual fluid segmentation as a time-consuming and subjective to error method.</p><p><strong>Methods: </strong>Deep learning techniques have been applied to various image processing tasks, and their performance has already been explored in the segmentation of fluids in OCTs. This article suggests a novel automated deep learning method utilizing the U-Net structure as the basis. The modifications consist of the application of transformers in the encoder path of the U-Net with the purpose of more concentrated feature extraction. Furthermore, a custom loss function is empirically tailored to efficiently incorporate proper loss functions to deal with the imbalance and noisy images. A weighted combination of Dice loss, focal Tversky loss, and weighted binary cross-entropy is employed.</p><p><strong>Results: </strong>Different metrics are calculated. The results show high accuracy (Dice coefficient of 95.52) and robustness of the proposed method in comparison to different methods after adding extra noise to the images (Dice coefficient of 92.79).</p><p><strong>Conclusions: </strong>The segmentation of fluid regions in retinal OCT images is critical because it assists clinicians in diagnosing macular edema and executing therapeutic operations more quickly. This study suggests a deep learning framework and novel loss function for automated fluid segmentation of retinal OCT images with excellent accuracy and rapid convergence result.</p>\",\"PeriodicalId\":37680,\"journal\":{\"name\":\"Journal of Medical Signals & Sensors\",\"volume\":\"13 4\",\"pages\":\"253-260\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/2b/d1/JMSS-13-253.PMC10559298.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Signals & Sensors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4103/jmss.jmss_52_22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/10/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Signals & Sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/jmss.jmss_52_22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Loss-Modified Transformer-Based U-Net for Accurate Segmentation of Fluids in Optical Coherence Tomography Images of Retinal Diseases.
Background: Optical coherence tomography (OCT) imaging significantly contributes to ophthalmology in the diagnosis of retinal disorders such as age-related macular degeneration and diabetic macular edema. Both diseases involve the abnormal accumulation of fluids, location, and volume, which is vitally informative in detecting the severity of the diseases. Automated and accurate fluid segmentation in OCT images could potentially improve the current clinical diagnosis. This becomes more important by considering the limitations of manual fluid segmentation as a time-consuming and subjective to error method.
Methods: Deep learning techniques have been applied to various image processing tasks, and their performance has already been explored in the segmentation of fluids in OCTs. This article suggests a novel automated deep learning method utilizing the U-Net structure as the basis. The modifications consist of the application of transformers in the encoder path of the U-Net with the purpose of more concentrated feature extraction. Furthermore, a custom loss function is empirically tailored to efficiently incorporate proper loss functions to deal with the imbalance and noisy images. A weighted combination of Dice loss, focal Tversky loss, and weighted binary cross-entropy is employed.
Results: Different metrics are calculated. The results show high accuracy (Dice coefficient of 95.52) and robustness of the proposed method in comparison to different methods after adding extra noise to the images (Dice coefficient of 92.79).
Conclusions: The segmentation of fluid regions in retinal OCT images is critical because it assists clinicians in diagnosing macular edema and executing therapeutic operations more quickly. This study suggests a deep learning framework and novel loss function for automated fluid segmentation of retinal OCT images with excellent accuracy and rapid convergence result.
期刊介绍:
JMSS is an interdisciplinary journal that incorporates all aspects of the biomedical engineering including bioelectrics, bioinformatics, medical physics, health technology assessment, etc. Subject areas covered by the journal include: - Bioelectric: Bioinstruments Biosensors Modeling Biomedical signal processing Medical image analysis and processing Medical imaging devices Control of biological systems Neuromuscular systems Cognitive sciences Telemedicine Robotic Medical ultrasonography Bioelectromagnetics Electrophysiology Cell tracking - Bioinformatics and medical informatics: Analysis of biological data Data mining Stochastic modeling Computational genomics Artificial intelligence & fuzzy Applications Medical softwares Bioalgorithms Electronic health - Biophysics and medical physics: Computed tomography Radiation therapy Laser therapy - Education in biomedical engineering - Health technology assessment - Standard in biomedical engineering.