Megan D Radyk, Lillian B Spatz, Mahliyah L Adkins-Threats, Kitra Cates, Celine L St Pierre
{"title":"对一门为期8周的高中科学传播课程的评估,该课程旨在阅读、写作和介绍科学研究。","authors":"Megan D Radyk, Lillian B Spatz, Mahliyah L Adkins-Threats, Kitra Cates, Celine L St Pierre","doi":"10.1152/advan.00085.2022","DOIUrl":null,"url":null,"abstract":"<p><p>The development of science writing and presentation skills is necessary for a successful science career. Too often these skills are not included in pre- or postsecondary science, technology, engineering, and mathematics (STEM) education, leading to a disconnect between high schoolers' expectations for college preparedness and the skills needed to succeed in college. The Young Scientist Program Summer Focus recruits high school students from historically marginalized backgrounds to participate in 8-week summer internships at Washington University in St. Louis. Students conduct hands-on biomedical research projects under the mentorship of Washington University scientists (graduate students, postdoctorates, lab staff). Here, we present the curriculum for a science communication course that accompanies this early research experience. The course is designed to strengthen students' communication skills (critical reading, writing, presenting, and peer review) through a combination of weekly lectures and active learning methods. It prepares students for the capstone of their summer internship: writing a scientific paper and presenting their results at a closing symposium. We administered pre- and postprogram surveys to four Summer Focus cohorts to determine whether the course met its learning objectives. We found significant improvements in students' self-confidence in reading, interpreting, and communicating scientific data. Thus, this course provides a successful model for introducing science literacy and communication skills that are necessary for any career in STEM. We provide a detailed outline of the course structure and content so that this training can be incorporated into any undergraduate and graduate research programs.<b>NEW & NOTEWORTHY</b> Strong communication skills are necessary for a successful scientific career. Here, we describe the curriculum for a science communication course designed to accompany high school students participating in a summer biomedical research program. The course aims to improve their scientific literacy and communication skills. Students learn to read and understand scientific literature, write a paper about their summer research project, present their results, and provide feedback to peers. We found significant improvements in students' self-confidence in reading, interpreting, and communicating scientific data after completing the course. This successful model serves as a guide for students participating in their first research experience and provides the skills for success in future science, technology, engineering, and mathematics education and careers. The curriculum presented here can be easily adapted for any research program, including undergraduate summer research experiences and graduate student laboratory rotations.</p>","PeriodicalId":50852,"journal":{"name":"Advances in Physiology Education","volume":" ","pages":"910-918"},"PeriodicalIF":1.7000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10854798/pdf/","citationCount":"0","resultStr":"{\"title\":\"Evaluation of an 8-week high school science communication course designed to read, write, and present scientific research.\",\"authors\":\"Megan D Radyk, Lillian B Spatz, Mahliyah L Adkins-Threats, Kitra Cates, Celine L St Pierre\",\"doi\":\"10.1152/advan.00085.2022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The development of science writing and presentation skills is necessary for a successful science career. Too often these skills are not included in pre- or postsecondary science, technology, engineering, and mathematics (STEM) education, leading to a disconnect between high schoolers' expectations for college preparedness and the skills needed to succeed in college. The Young Scientist Program Summer Focus recruits high school students from historically marginalized backgrounds to participate in 8-week summer internships at Washington University in St. Louis. Students conduct hands-on biomedical research projects under the mentorship of Washington University scientists (graduate students, postdoctorates, lab staff). Here, we present the curriculum for a science communication course that accompanies this early research experience. The course is designed to strengthen students' communication skills (critical reading, writing, presenting, and peer review) through a combination of weekly lectures and active learning methods. It prepares students for the capstone of their summer internship: writing a scientific paper and presenting their results at a closing symposium. We administered pre- and postprogram surveys to four Summer Focus cohorts to determine whether the course met its learning objectives. We found significant improvements in students' self-confidence in reading, interpreting, and communicating scientific data. Thus, this course provides a successful model for introducing science literacy and communication skills that are necessary for any career in STEM. We provide a detailed outline of the course structure and content so that this training can be incorporated into any undergraduate and graduate research programs.<b>NEW & NOTEWORTHY</b> Strong communication skills are necessary for a successful scientific career. Here, we describe the curriculum for a science communication course designed to accompany high school students participating in a summer biomedical research program. The course aims to improve their scientific literacy and communication skills. Students learn to read and understand scientific literature, write a paper about their summer research project, present their results, and provide feedback to peers. We found significant improvements in students' self-confidence in reading, interpreting, and communicating scientific data after completing the course. This successful model serves as a guide for students participating in their first research experience and provides the skills for success in future science, technology, engineering, and mathematics education and careers. The curriculum presented here can be easily adapted for any research program, including undergraduate summer research experiences and graduate student laboratory rotations.</p>\",\"PeriodicalId\":50852,\"journal\":{\"name\":\"Advances in Physiology Education\",\"volume\":\" \",\"pages\":\"910-918\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10854798/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Physiology Education\",\"FirstCategoryId\":\"95\",\"ListUrlMain\":\"https://doi.org/10.1152/advan.00085.2022\",\"RegionNum\":4,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"EDUCATION, SCIENTIFIC DISCIPLINES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Physiology Education","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1152/advan.00085.2022","RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/28 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
Evaluation of an 8-week high school science communication course designed to read, write, and present scientific research.
The development of science writing and presentation skills is necessary for a successful science career. Too often these skills are not included in pre- or postsecondary science, technology, engineering, and mathematics (STEM) education, leading to a disconnect between high schoolers' expectations for college preparedness and the skills needed to succeed in college. The Young Scientist Program Summer Focus recruits high school students from historically marginalized backgrounds to participate in 8-week summer internships at Washington University in St. Louis. Students conduct hands-on biomedical research projects under the mentorship of Washington University scientists (graduate students, postdoctorates, lab staff). Here, we present the curriculum for a science communication course that accompanies this early research experience. The course is designed to strengthen students' communication skills (critical reading, writing, presenting, and peer review) through a combination of weekly lectures and active learning methods. It prepares students for the capstone of their summer internship: writing a scientific paper and presenting their results at a closing symposium. We administered pre- and postprogram surveys to four Summer Focus cohorts to determine whether the course met its learning objectives. We found significant improvements in students' self-confidence in reading, interpreting, and communicating scientific data. Thus, this course provides a successful model for introducing science literacy and communication skills that are necessary for any career in STEM. We provide a detailed outline of the course structure and content so that this training can be incorporated into any undergraduate and graduate research programs.NEW & NOTEWORTHY Strong communication skills are necessary for a successful scientific career. Here, we describe the curriculum for a science communication course designed to accompany high school students participating in a summer biomedical research program. The course aims to improve their scientific literacy and communication skills. Students learn to read and understand scientific literature, write a paper about their summer research project, present their results, and provide feedback to peers. We found significant improvements in students' self-confidence in reading, interpreting, and communicating scientific data after completing the course. This successful model serves as a guide for students participating in their first research experience and provides the skills for success in future science, technology, engineering, and mathematics education and careers. The curriculum presented here can be easily adapted for any research program, including undergraduate summer research experiences and graduate student laboratory rotations.
期刊介绍:
Advances in Physiology Education promotes and disseminates educational scholarship in order to enhance teaching and learning of physiology, neuroscience and pathophysiology. The journal publishes peer-reviewed descriptions of innovations that improve teaching in the classroom and laboratory, essays on education, and review articles based on our current understanding of physiological mechanisms. Submissions that evaluate new technologies for teaching and research, and educational pedagogy, are especially welcome. The audience for the journal includes educators at all levels: K–12, undergraduate, graduate, and professional programs.