{"title":"NeighborNet:改进的算法和实现。","authors":"David Bryant, Daniel H Huson","doi":"10.3389/fbinf.2023.1178600","DOIUrl":null,"url":null,"abstract":"<p><p>NeighborNet constructs phylogenetic networks to visualize distance data. It is a popular method used in a wide range of applications. While several studies have investigated its mathematical features, here we focus on computational aspects. The algorithm operates in three steps. We present a new simplified formulation of the first step, which aims at computing a circular ordering. We provide the first technical description of the second step, the estimation of split weights. We review the third step by constructing and drawing the network. Finally, we discuss how the networks might best be interpreted, review related approaches, and present some open questions.</p>","PeriodicalId":73066,"journal":{"name":"Frontiers in bioinformatics","volume":"3 ","pages":"1178600"},"PeriodicalIF":2.8000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10548196/pdf/","citationCount":"0","resultStr":"{\"title\":\"NeighborNet: improved algorithms and implementation.\",\"authors\":\"David Bryant, Daniel H Huson\",\"doi\":\"10.3389/fbinf.2023.1178600\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>NeighborNet constructs phylogenetic networks to visualize distance data. It is a popular method used in a wide range of applications. While several studies have investigated its mathematical features, here we focus on computational aspects. The algorithm operates in three steps. We present a new simplified formulation of the first step, which aims at computing a circular ordering. We provide the first technical description of the second step, the estimation of split weights. We review the third step by constructing and drawing the network. Finally, we discuss how the networks might best be interpreted, review related approaches, and present some open questions.</p>\",\"PeriodicalId\":73066,\"journal\":{\"name\":\"Frontiers in bioinformatics\",\"volume\":\"3 \",\"pages\":\"1178600\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10548196/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fbinf.2023.1178600\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fbinf.2023.1178600","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
NeighborNet: improved algorithms and implementation.
NeighborNet constructs phylogenetic networks to visualize distance data. It is a popular method used in a wide range of applications. While several studies have investigated its mathematical features, here we focus on computational aspects. The algorithm operates in three steps. We present a new simplified formulation of the first step, which aims at computing a circular ordering. We provide the first technical description of the second step, the estimation of split weights. We review the third step by constructing and drawing the network. Finally, we discuss how the networks might best be interpreted, review related approaches, and present some open questions.