功能性近红外光谱在阿尔茨海默病失调症研究中的应用:概念验证实验。

IF 1.3 Q4 ENGINEERING, BIOMEDICAL Journal of Medical Signals & Sensors Pub Date : 2023-08-31 eCollection Date: 2023-10-01 DOI:10.4103/jmss.jmss_40_22
Kiarash Azimzadeh, Majid Barekatain, Farinaz Tabibian
{"title":"功能性近红外光谱在阿尔茨海默病失调症研究中的应用:概念验证实验。","authors":"Kiarash Azimzadeh, Majid Barekatain, Farinaz Tabibian","doi":"10.4103/jmss.jmss_40_22","DOIUrl":null,"url":null,"abstract":"obtained. A continuous‐wave OxyMon fNIRS system (Artinis Medical Systems, Netherlands) with 28 active channels and a 10 Hz sampling rate was used. Measured wavelengths were 762 and 845 nm. Based on previous findings, the middle and superior parts of the temporal lobe, inferior and superior parts of the parietal lobe, and superior, middle, and inferior parts of the frontal lobe were selected as regions of interest.[9‐11] Location of optodes was determined using fNIRS Optodes’ Location Decider[12] and the most similar template was selected [Figure 2]. Raw data were processed using Homer3 in MATLAB 2021a (MathWorks, Natick, MA, USA).[13] After the conversion of light intensity signals to an optical density (OD), a bandpass filter of 0.01–0.1 Hz was applied and targeted principle component analysis was performed.[14] Changes in OD were then converted to concentration changes using modified Beer–Lambert Law.[15] Concentration changes within a period of‐2s before stimulus onset to 60s after stimulus onset (2s for baseline, 35s for five stimuli, and 23s for return to baseline) were averaged to obtain the hemodynamic response functions (HRF) during the task. Next, the HRF from channels within one region of interest (ROI) was averaged. Figures 3 and 4 demonstrate the HRF during the task. Overall, this experiment suggests that fNIRS can be used to study apraxia, especially in elderly patients with neurodegenerative diseases.","PeriodicalId":37680,"journal":{"name":"Journal of Medical Signals & Sensors","volume":"13 4","pages":"319-322"},"PeriodicalIF":1.3000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/6d/29/JMSS-13-319.PMC10559297.pdf","citationCount":"0","resultStr":"{\"title\":\"Application of Functional Near-Infrared Spectroscopy in Apraxia Studies in Alzheimer's Disease: A Proof of Concept Experiment.\",\"authors\":\"Kiarash Azimzadeh, Majid Barekatain, Farinaz Tabibian\",\"doi\":\"10.4103/jmss.jmss_40_22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"obtained. A continuous‐wave OxyMon fNIRS system (Artinis Medical Systems, Netherlands) with 28 active channels and a 10 Hz sampling rate was used. Measured wavelengths were 762 and 845 nm. Based on previous findings, the middle and superior parts of the temporal lobe, inferior and superior parts of the parietal lobe, and superior, middle, and inferior parts of the frontal lobe were selected as regions of interest.[9‐11] Location of optodes was determined using fNIRS Optodes’ Location Decider[12] and the most similar template was selected [Figure 2]. Raw data were processed using Homer3 in MATLAB 2021a (MathWorks, Natick, MA, USA).[13] After the conversion of light intensity signals to an optical density (OD), a bandpass filter of 0.01–0.1 Hz was applied and targeted principle component analysis was performed.[14] Changes in OD were then converted to concentration changes using modified Beer–Lambert Law.[15] Concentration changes within a period of‐2s before stimulus onset to 60s after stimulus onset (2s for baseline, 35s for five stimuli, and 23s for return to baseline) were averaged to obtain the hemodynamic response functions (HRF) during the task. Next, the HRF from channels within one region of interest (ROI) was averaged. Figures 3 and 4 demonstrate the HRF during the task. Overall, this experiment suggests that fNIRS can be used to study apraxia, especially in elderly patients with neurodegenerative diseases.\",\"PeriodicalId\":37680,\"journal\":{\"name\":\"Journal of Medical Signals & Sensors\",\"volume\":\"13 4\",\"pages\":\"319-322\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/6d/29/JMSS-13-319.PMC10559297.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Signals & Sensors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4103/jmss.jmss_40_22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/10/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Signals & Sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/jmss.jmss_40_22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Application of Functional Near-Infrared Spectroscopy in Apraxia Studies in Alzheimer's Disease: A Proof of Concept Experiment.
obtained. A continuous‐wave OxyMon fNIRS system (Artinis Medical Systems, Netherlands) with 28 active channels and a 10 Hz sampling rate was used. Measured wavelengths were 762 and 845 nm. Based on previous findings, the middle and superior parts of the temporal lobe, inferior and superior parts of the parietal lobe, and superior, middle, and inferior parts of the frontal lobe were selected as regions of interest.[9‐11] Location of optodes was determined using fNIRS Optodes’ Location Decider[12] and the most similar template was selected [Figure 2]. Raw data were processed using Homer3 in MATLAB 2021a (MathWorks, Natick, MA, USA).[13] After the conversion of light intensity signals to an optical density (OD), a bandpass filter of 0.01–0.1 Hz was applied and targeted principle component analysis was performed.[14] Changes in OD were then converted to concentration changes using modified Beer–Lambert Law.[15] Concentration changes within a period of‐2s before stimulus onset to 60s after stimulus onset (2s for baseline, 35s for five stimuli, and 23s for return to baseline) were averaged to obtain the hemodynamic response functions (HRF) during the task. Next, the HRF from channels within one region of interest (ROI) was averaged. Figures 3 and 4 demonstrate the HRF during the task. Overall, this experiment suggests that fNIRS can be used to study apraxia, especially in elderly patients with neurodegenerative diseases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Medical Signals & Sensors
Journal of Medical Signals & Sensors ENGINEERING, BIOMEDICAL-
CiteScore
2.30
自引率
0.00%
发文量
53
审稿时长
33 weeks
期刊介绍: JMSS is an interdisciplinary journal that incorporates all aspects of the biomedical engineering including bioelectrics, bioinformatics, medical physics, health technology assessment, etc. Subject areas covered by the journal include: - Bioelectric: Bioinstruments Biosensors Modeling Biomedical signal processing Medical image analysis and processing Medical imaging devices Control of biological systems Neuromuscular systems Cognitive sciences Telemedicine Robotic Medical ultrasonography Bioelectromagnetics Electrophysiology Cell tracking - Bioinformatics and medical informatics: Analysis of biological data Data mining Stochastic modeling Computational genomics Artificial intelligence & fuzzy Applications Medical softwares Bioalgorithms Electronic health - Biophysics and medical physics: Computed tomography Radiation therapy Laser therapy - Education in biomedical engineering - Health technology assessment - Standard in biomedical engineering.
期刊最新文献
Computed Tomography Scan and Clinical-based Complete Response Prediction in Locally Advanced Rectal Cancer after Neoadjuvant Chemoradiotherapy: A Machine Learning Approach. Radiomics based Machine Learning Models for Classification of Prostate Cancer Grade Groups from Multi Parametric MRI Images. Advancing Proton Therapy: A Review of Geant4 Simulation for Enhanced Planning and Optimization in Hadron Therapy. Evaluation of Dose Calculation Algorithms Accuracy for ISOgray Treatment Planning System in Motorized Wedged Treatment Fields. Diagnosis of Autism in Children Based on their Gait Pattern and Movement Signs Using the Kinect Sensor.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1