{"title":"使用随机积分来检验高维协方差矩阵的相等性。","authors":"Yunlu Jiang, Canhong Wen, Yukang Jiang, Xueqin Wang, Heping Zhang","doi":"10.5705/ss.202020.0486","DOIUrl":null,"url":null,"abstract":"<p><p>Testing the equality of two covariance matrices is a fundamental problem in statistics, and especially challenging when the data are high-dimensional. Through a novel use of random integration, we can test the equality of high-dimensional covariance matrices without assuming parametric distributions for the two underlying populations, even if the dimension is much larger than the sample size. The asymptotic properties of our test for arbitrary number of covariates and sample size are studied in depth under a general multivariate model. The finite-sample performance of our test is evaluated through numerical studies. The empirical results demonstrate that our test is highly competitive with existing tests in a wide range of settings. In particular, our proposed test is distinctly powerful under different settings when there exist a few large or many small diagonal disturbances between the two covariance matrices.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10550010/pdf/","citationCount":"0","resultStr":"{\"title\":\"Use of random integration to test equality of high dimensional covariance matrices.\",\"authors\":\"Yunlu Jiang, Canhong Wen, Yukang Jiang, Xueqin Wang, Heping Zhang\",\"doi\":\"10.5705/ss.202020.0486\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Testing the equality of two covariance matrices is a fundamental problem in statistics, and especially challenging when the data are high-dimensional. Through a novel use of random integration, we can test the equality of high-dimensional covariance matrices without assuming parametric distributions for the two underlying populations, even if the dimension is much larger than the sample size. The asymptotic properties of our test for arbitrary number of covariates and sample size are studied in depth under a general multivariate model. The finite-sample performance of our test is evaluated through numerical studies. The empirical results demonstrate that our test is highly competitive with existing tests in a wide range of settings. In particular, our proposed test is distinctly powerful under different settings when there exist a few large or many small diagonal disturbances between the two covariance matrices.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10550010/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5705/ss.202020.0486\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5705/ss.202020.0486","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Use of random integration to test equality of high dimensional covariance matrices.
Testing the equality of two covariance matrices is a fundamental problem in statistics, and especially challenging when the data are high-dimensional. Through a novel use of random integration, we can test the equality of high-dimensional covariance matrices without assuming parametric distributions for the two underlying populations, even if the dimension is much larger than the sample size. The asymptotic properties of our test for arbitrary number of covariates and sample size are studied in depth under a general multivariate model. The finite-sample performance of our test is evaluated through numerical studies. The empirical results demonstrate that our test is highly competitive with existing tests in a wide range of settings. In particular, our proposed test is distinctly powerful under different settings when there exist a few large or many small diagonal disturbances between the two covariance matrices.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.