M-MSSEU:使用阴影集和证据不确定性进行多模式中风病变分割的无源域自适应。

IF 4.7 3区 医学 Q1 MEDICAL INFORMATICS Health Information Science and Systems Pub Date : 2023-09-28 eCollection Date: 2023-12-01 DOI:10.1007/s13755-023-00247-6
Zhicheng Wang, Hongqing Zhu, Bingcang Huang, Ziying Wang, Weiping Lu, Ning Chen, Ying Wang
{"title":"M-MSSEU:使用阴影集和证据不确定性进行多模式中风病变分割的无源域自适应。","authors":"Zhicheng Wang, Hongqing Zhu, Bingcang Huang, Ziying Wang, Weiping Lu, Ning Chen, Ying Wang","doi":"10.1007/s13755-023-00247-6","DOIUrl":null,"url":null,"abstract":"<p><p>Due to the unavailability of source domain data encountered in unsupervised domain adaptation, there has been an increasing number of studies on source-free domain adaptation (SFDA) in recent years. To better solve the SFDA problem and effectively leverage the multi-modal information in medical images, this paper presents a novel SFDA method for multi-modal stroke lesion segmentation in which evidential deep learning instead of convolutional neural network. Specifically, for multi-modal stroke images, we design a multi-modal opinion fusion module which uses Dempster-Shafer evidence theory for decision fusion of different modalities. Besides, for the SFDA problem, we use the pseudo label learning method, which obtains pseudo labels from the pre-trained source model to perform the adaptation process. To solve the unreliability of pseudo label caused by domain shift, we propose a pseudo label filtering scheme using shadowed sets theory and a pseudo label refining scheme using evidential uncertainty. These two schemes can automatically extract unreliable parts in pseudo labels and jointly improve the quality of pseudo labels with low computational costs. Experiments on two multi-modal stroke lesion datasets demonstrate the superiority of our method over other state-of-the-art SFDA methods.</p>","PeriodicalId":46312,"journal":{"name":"Health Information Science and Systems","volume":"11 1","pages":"46"},"PeriodicalIF":4.7000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10539264/pdf/","citationCount":"0","resultStr":"{\"title\":\"M-MSSEU: source-free domain adaptation for multi-modal stroke lesion segmentation using shadowed sets and evidential uncertainty.\",\"authors\":\"Zhicheng Wang, Hongqing Zhu, Bingcang Huang, Ziying Wang, Weiping Lu, Ning Chen, Ying Wang\",\"doi\":\"10.1007/s13755-023-00247-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Due to the unavailability of source domain data encountered in unsupervised domain adaptation, there has been an increasing number of studies on source-free domain adaptation (SFDA) in recent years. To better solve the SFDA problem and effectively leverage the multi-modal information in medical images, this paper presents a novel SFDA method for multi-modal stroke lesion segmentation in which evidential deep learning instead of convolutional neural network. Specifically, for multi-modal stroke images, we design a multi-modal opinion fusion module which uses Dempster-Shafer evidence theory for decision fusion of different modalities. Besides, for the SFDA problem, we use the pseudo label learning method, which obtains pseudo labels from the pre-trained source model to perform the adaptation process. To solve the unreliability of pseudo label caused by domain shift, we propose a pseudo label filtering scheme using shadowed sets theory and a pseudo label refining scheme using evidential uncertainty. These two schemes can automatically extract unreliable parts in pseudo labels and jointly improve the quality of pseudo labels with low computational costs. Experiments on two multi-modal stroke lesion datasets demonstrate the superiority of our method over other state-of-the-art SFDA methods.</p>\",\"PeriodicalId\":46312,\"journal\":{\"name\":\"Health Information Science and Systems\",\"volume\":\"11 1\",\"pages\":\"46\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2023-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10539264/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Health Information Science and Systems\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s13755-023-00247-6\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/12/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICAL INFORMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Information Science and Systems","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13755-023-00247-6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0

摘要

由于在无监督领域自适应中遇到的源领域数据不可用,近年来对无源领域自适应(SFDA)的研究越来越多。为了更好地解决SFDA问题,并有效地利用医学图像中的多模态信息,本文提出了一种新的用于多模态中风病变分割的SFDA方法,该方法使用证据深度学习代替卷积神经网络。具体来说,对于多模态中风图像,我们设计了一个多模态意见融合模块,该模块使用Dempster-Shafer证据理论对不同模态进行决策融合。此外,对于SFDA问题,我们使用伪标签学习方法,该方法从预先训练的源模型中获得伪标签来执行自适应过程。为了解决域偏移引起的伪标签不可靠性问题,我们提出了一种利用阴影集理论的伪标签滤波方案和一种利用证据不确定性的伪标签细化方案。这两种方案可以自动提取伪标签中的不可靠部分,并以较低的计算成本共同提高伪标签的质量。在两个多模态中风病变数据集上的实验证明了我们的方法优于其他最先进的SFDA方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
M-MSSEU: source-free domain adaptation for multi-modal stroke lesion segmentation using shadowed sets and evidential uncertainty.

Due to the unavailability of source domain data encountered in unsupervised domain adaptation, there has been an increasing number of studies on source-free domain adaptation (SFDA) in recent years. To better solve the SFDA problem and effectively leverage the multi-modal information in medical images, this paper presents a novel SFDA method for multi-modal stroke lesion segmentation in which evidential deep learning instead of convolutional neural network. Specifically, for multi-modal stroke images, we design a multi-modal opinion fusion module which uses Dempster-Shafer evidence theory for decision fusion of different modalities. Besides, for the SFDA problem, we use the pseudo label learning method, which obtains pseudo labels from the pre-trained source model to perform the adaptation process. To solve the unreliability of pseudo label caused by domain shift, we propose a pseudo label filtering scheme using shadowed sets theory and a pseudo label refining scheme using evidential uncertainty. These two schemes can automatically extract unreliable parts in pseudo labels and jointly improve the quality of pseudo labels with low computational costs. Experiments on two multi-modal stroke lesion datasets demonstrate the superiority of our method over other state-of-the-art SFDA methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.30
自引率
5.00%
发文量
30
期刊介绍: Health Information Science and Systems is a multidisciplinary journal that integrates artificial intelligence/computer science/information technology with health science and services, embracing information science research coupled with topics related to the modeling, design, development, integration and management of health information systems, smart health, artificial intelligence in medicine, and computer aided diagnosis, medical expert systems. The scope includes: i.) smart health, artificial Intelligence in medicine, computer aided diagnosis, medical image processing, medical expert systems ii.) medical big data, medical/health/biomedicine information resources such as patient medical records, devices and equipments, software and tools to capture, store, retrieve, process, analyze, optimize the use of information in the health domain, iii.) data management, data mining, and knowledge discovery, all of which play a key role in decision making, management of public health, examination of standards, privacy and security issues, iv.) development of new architectures and applications for health information systems.
期刊最新文献
Advancing personalized healthcare: leveraging explainable AI for BPPV risk assessment. A new multivariate blood glucose prediction method with hybrid feature clustering and online transfer learning. Memetic ant colony optimization for multi-constrained cognitive diagnostic test construction. Forecasting fMRI images from video sequences: linear model analysis. KSDKG: construction and application of knowledge graph for kidney stone disease based on biomedical literature and public databases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1