利奈唑胺对金黄色葡萄球菌生物膜形成的抑制通过直接抑制icaA活性减轻由金黄色葡萄菌感染引起的败血症诱导的肺损伤。

IF 1.5 4区 医学 Q4 MICROBIOLOGY New Microbiologica Pub Date : 2023-09-01
Huan Kuang, Hongxia Bi, Xiaoran Li, Xiaojv Lv, Yanbin Liu
{"title":"利奈唑胺对金黄色葡萄球菌生物膜形成的抑制通过直接抑制icaA活性减轻由金黄色葡萄菌感染引起的败血症诱导的肺损伤。","authors":"Huan Kuang,&nbsp;Hongxia Bi,&nbsp;Xiaoran Li,&nbsp;Xiaojv Lv,&nbsp;Yanbin Liu","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Antibiotic-resistant S. aureus infections can be life-threatening. Linezolid is known to hinder S. aureus biofilm formation, but the underlying molecular mechanism remains unclear. Molecular docking revealed that linezolid can bind to icaA, and this was confirmed by thermal drift assays. Linezolid demonstrated a dose-dependent inhibition of icaA enzyme activity. Mutating Trp267, a key residue identified through molecular docking, significantly decreased linezolid binding and inhibitory effects on mutant icaA activity. However, the mutant icaA Trp267Ala showed only slight activity reduction compared to icaA. Linezolid had minimal impact on icaB's thermal stability and activity. The 50S ribosomal L3ΔSer145 mutant S. aureus exhibited similar growth and biofilm formation to the wild-type strain. Linezolid effectively suppressed the growth and biofilm formation of wildtype S. aureus. Although linezolid lost its ability to inhibit the growth of the mutant strain, it still effectively hindered its biofilm formation. Linezolid exhibited weaker attenuation of sepsis-induced lung injury caused by 50S ribosomal L3ΔSer145 mutant S. aureus compared to wild-type S. aureus. These findings indicate that linezolid hampers S. aureus biofilm formation by directly inhibiting icaA activity, independently of its impact on bacterial growth.</p>","PeriodicalId":54723,"journal":{"name":"New Microbiologica","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inhibition of S. aureus biofilm formation by linezolid alleviates sepsis-induced lung injury caused by S. aureus infection through direct inhibition of icaA activity.\",\"authors\":\"Huan Kuang,&nbsp;Hongxia Bi,&nbsp;Xiaoran Li,&nbsp;Xiaojv Lv,&nbsp;Yanbin Liu\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Antibiotic-resistant S. aureus infections can be life-threatening. Linezolid is known to hinder S. aureus biofilm formation, but the underlying molecular mechanism remains unclear. Molecular docking revealed that linezolid can bind to icaA, and this was confirmed by thermal drift assays. Linezolid demonstrated a dose-dependent inhibition of icaA enzyme activity. Mutating Trp267, a key residue identified through molecular docking, significantly decreased linezolid binding and inhibitory effects on mutant icaA activity. However, the mutant icaA Trp267Ala showed only slight activity reduction compared to icaA. Linezolid had minimal impact on icaB's thermal stability and activity. The 50S ribosomal L3ΔSer145 mutant S. aureus exhibited similar growth and biofilm formation to the wild-type strain. Linezolid effectively suppressed the growth and biofilm formation of wildtype S. aureus. Although linezolid lost its ability to inhibit the growth of the mutant strain, it still effectively hindered its biofilm formation. Linezolid exhibited weaker attenuation of sepsis-induced lung injury caused by 50S ribosomal L3ΔSer145 mutant S. aureus compared to wild-type S. aureus. These findings indicate that linezolid hampers S. aureus biofilm formation by directly inhibiting icaA activity, independently of its impact on bacterial growth.</p>\",\"PeriodicalId\":54723,\"journal\":{\"name\":\"New Microbiologica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Microbiologica\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Microbiologica","FirstCategoryId":"3","ListUrlMain":"","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

耐抗生素的金黄色葡萄球菌感染可能危及生命。已知利奈唑胺会阻碍金黄色葡萄球菌生物膜的形成,但其潜在的分子机制尚不清楚。分子对接显示利奈唑胺可以与icaA结合,这一点已通过热漂移分析得到证实。利奈唑胺对icaA酶活性具有剂量依赖性抑制作用。通过分子对接鉴定的关键残基Trp267的突变显著降低了利奈唑胺的结合和对突变体icaA活性的抑制作用。然而,与icaA相比,突变体icaA-Trp267Ala仅显示出轻微的活性降低。利奈唑胺对icaB的热稳定性和活性影响最小。50S核糖体L3ΔSer145突变体金黄色葡萄球菌表现出与野生型菌株相似的生长和生物膜形成。利奈唑胺能有效抑制野生型金黄色葡萄球菌的生长和生物膜的形成。尽管利奈唑胺失去了抑制突变菌株生长的能力,但它仍然有效地阻碍了其生物膜的形成。与野生型金黄色葡萄球菌相比,利奈唑胺对50S核糖体L3ΔSer145突变金黄色葡萄菌引起的败血症诱导的肺损伤表现出较弱的衰减。这些发现表明,利奈唑胺通过直接抑制icaA活性来阻碍金黄色葡萄球菌生物膜的形成,而与它对细菌生长的影响无关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Inhibition of S. aureus biofilm formation by linezolid alleviates sepsis-induced lung injury caused by S. aureus infection through direct inhibition of icaA activity.

Antibiotic-resistant S. aureus infections can be life-threatening. Linezolid is known to hinder S. aureus biofilm formation, but the underlying molecular mechanism remains unclear. Molecular docking revealed that linezolid can bind to icaA, and this was confirmed by thermal drift assays. Linezolid demonstrated a dose-dependent inhibition of icaA enzyme activity. Mutating Trp267, a key residue identified through molecular docking, significantly decreased linezolid binding and inhibitory effects on mutant icaA activity. However, the mutant icaA Trp267Ala showed only slight activity reduction compared to icaA. Linezolid had minimal impact on icaB's thermal stability and activity. The 50S ribosomal L3ΔSer145 mutant S. aureus exhibited similar growth and biofilm formation to the wild-type strain. Linezolid effectively suppressed the growth and biofilm formation of wildtype S. aureus. Although linezolid lost its ability to inhibit the growth of the mutant strain, it still effectively hindered its biofilm formation. Linezolid exhibited weaker attenuation of sepsis-induced lung injury caused by 50S ribosomal L3ΔSer145 mutant S. aureus compared to wild-type S. aureus. These findings indicate that linezolid hampers S. aureus biofilm formation by directly inhibiting icaA activity, independently of its impact on bacterial growth.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
New Microbiologica
New Microbiologica 生物-微生物学
CiteScore
2.20
自引率
5.60%
发文量
40
审稿时长
6-12 weeks
期刊介绍: The publication, diffusion and furtherance of research and study on all aspects of basic and clinical Microbiology and related fields are the chief aims of the journal.
期刊最新文献
Aerobic vaginitis: antibiotic resistance trend and future actions of antimicrobial diagnostic stewardship. Antifungal susceptibility pattern of Candida auris strains: Analysis of clinical strains in a tertiary-care educational university hospital. Converting biomass waste into valuable biomaterials and bioactive compounds: an overview of antimicrobial activities in the pursuit of global sustainability and health. Etiological structure and antibiotic resistance pattern of burn wound infections in hospitalized patients - a one-center study in Varna, Bulgaria. Hepatitis C Virus (HCV) genotypes distribution in South-Eastern Tuscany: a ten-year retrospective study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1