Huan Kuang, Hongxia Bi, Xiaoran Li, Xiaojv Lv, Yanbin Liu
{"title":"利奈唑胺对金黄色葡萄球菌生物膜形成的抑制通过直接抑制icaA活性减轻由金黄色葡萄菌感染引起的败血症诱导的肺损伤。","authors":"Huan Kuang, Hongxia Bi, Xiaoran Li, Xiaojv Lv, Yanbin Liu","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Antibiotic-resistant S. aureus infections can be life-threatening. Linezolid is known to hinder S. aureus biofilm formation, but the underlying molecular mechanism remains unclear. Molecular docking revealed that linezolid can bind to icaA, and this was confirmed by thermal drift assays. Linezolid demonstrated a dose-dependent inhibition of icaA enzyme activity. Mutating Trp267, a key residue identified through molecular docking, significantly decreased linezolid binding and inhibitory effects on mutant icaA activity. However, the mutant icaA Trp267Ala showed only slight activity reduction compared to icaA. Linezolid had minimal impact on icaB's thermal stability and activity. The 50S ribosomal L3ΔSer145 mutant S. aureus exhibited similar growth and biofilm formation to the wild-type strain. Linezolid effectively suppressed the growth and biofilm formation of wildtype S. aureus. Although linezolid lost its ability to inhibit the growth of the mutant strain, it still effectively hindered its biofilm formation. Linezolid exhibited weaker attenuation of sepsis-induced lung injury caused by 50S ribosomal L3ΔSer145 mutant S. aureus compared to wild-type S. aureus. These findings indicate that linezolid hampers S. aureus biofilm formation by directly inhibiting icaA activity, independently of its impact on bacterial growth.</p>","PeriodicalId":54723,"journal":{"name":"New Microbiologica","volume":"46 3","pages":"285-295"},"PeriodicalIF":1.5000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inhibition of S. aureus biofilm formation by linezolid alleviates sepsis-induced lung injury caused by S. aureus infection through direct inhibition of icaA activity.\",\"authors\":\"Huan Kuang, Hongxia Bi, Xiaoran Li, Xiaojv Lv, Yanbin Liu\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Antibiotic-resistant S. aureus infections can be life-threatening. Linezolid is known to hinder S. aureus biofilm formation, but the underlying molecular mechanism remains unclear. Molecular docking revealed that linezolid can bind to icaA, and this was confirmed by thermal drift assays. Linezolid demonstrated a dose-dependent inhibition of icaA enzyme activity. Mutating Trp267, a key residue identified through molecular docking, significantly decreased linezolid binding and inhibitory effects on mutant icaA activity. However, the mutant icaA Trp267Ala showed only slight activity reduction compared to icaA. Linezolid had minimal impact on icaB's thermal stability and activity. The 50S ribosomal L3ΔSer145 mutant S. aureus exhibited similar growth and biofilm formation to the wild-type strain. Linezolid effectively suppressed the growth and biofilm formation of wildtype S. aureus. Although linezolid lost its ability to inhibit the growth of the mutant strain, it still effectively hindered its biofilm formation. Linezolid exhibited weaker attenuation of sepsis-induced lung injury caused by 50S ribosomal L3ΔSer145 mutant S. aureus compared to wild-type S. aureus. These findings indicate that linezolid hampers S. aureus biofilm formation by directly inhibiting icaA activity, independently of its impact on bacterial growth.</p>\",\"PeriodicalId\":54723,\"journal\":{\"name\":\"New Microbiologica\",\"volume\":\"46 3\",\"pages\":\"285-295\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Microbiologica\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Microbiologica","FirstCategoryId":"3","ListUrlMain":"","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Inhibition of S. aureus biofilm formation by linezolid alleviates sepsis-induced lung injury caused by S. aureus infection through direct inhibition of icaA activity.
Antibiotic-resistant S. aureus infections can be life-threatening. Linezolid is known to hinder S. aureus biofilm formation, but the underlying molecular mechanism remains unclear. Molecular docking revealed that linezolid can bind to icaA, and this was confirmed by thermal drift assays. Linezolid demonstrated a dose-dependent inhibition of icaA enzyme activity. Mutating Trp267, a key residue identified through molecular docking, significantly decreased linezolid binding and inhibitory effects on mutant icaA activity. However, the mutant icaA Trp267Ala showed only slight activity reduction compared to icaA. Linezolid had minimal impact on icaB's thermal stability and activity. The 50S ribosomal L3ΔSer145 mutant S. aureus exhibited similar growth and biofilm formation to the wild-type strain. Linezolid effectively suppressed the growth and biofilm formation of wildtype S. aureus. Although linezolid lost its ability to inhibit the growth of the mutant strain, it still effectively hindered its biofilm formation. Linezolid exhibited weaker attenuation of sepsis-induced lung injury caused by 50S ribosomal L3ΔSer145 mutant S. aureus compared to wild-type S. aureus. These findings indicate that linezolid hampers S. aureus biofilm formation by directly inhibiting icaA activity, independently of its impact on bacterial growth.
期刊介绍:
The publication, diffusion and furtherance of research and study on all aspects of basic and clinical Microbiology and related fields are the chief aims of the journal.