{"title":"原核可移动遗传元件的新面孔:引导RNA与宿主防御机制的连接","authors":"Eugene V. Koonin , Mart Krupovic","doi":"10.1016/j.coisb.2023.100473","DOIUrl":null,"url":null,"abstract":"<div><p><span><span><span>Most life forms harbor multiple, diverse mobile genetic elements (MGE) that widely differ in their rates and mechanisms of mobility. Recent findings on two classes of MGE in </span>prokaryotes revealed a novel mechanism, RNA-guided transposition, where a transposon-encoded guide </span>RNA<span><span><span> directs the transposase to a unique site in the host genome. Tn7-like transposons, on multiple occasions, recruited </span>CRISPR systems that lost the capacity to cleave target </span>DNA<span> and instead mediate RNA-guided transposition via CRISPR RNA. Conversely, the abundant transposon-associated, RNA-guided nucleases IscB and TnpB that appear to promote proliferation of IS</span></span></span><em>200</em>/IS<em>605</em> and IS<em>607</em><span> transposons were the likely evolutionary ancestors of type II and type V CRISPR systems, respectively. Thus, RNA-guided target recognition is a major biological phenomenon that connects MGE with host defense mechanisms. More RNA-guided defensive and MGE-associated functionalities are likely to be discovered.</span></p></div>","PeriodicalId":37400,"journal":{"name":"Current Opinion in Systems Biology","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10538440/pdf/","citationCount":"0","resultStr":"{\"title\":\"New faces of prokaryotic mobile genetic elements: Guide RNAs link transposition with host defense mechanisms\",\"authors\":\"Eugene V. Koonin , Mart Krupovic\",\"doi\":\"10.1016/j.coisb.2023.100473\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span><span>Most life forms harbor multiple, diverse mobile genetic elements (MGE) that widely differ in their rates and mechanisms of mobility. Recent findings on two classes of MGE in </span>prokaryotes revealed a novel mechanism, RNA-guided transposition, where a transposon-encoded guide </span>RNA<span><span><span> directs the transposase to a unique site in the host genome. Tn7-like transposons, on multiple occasions, recruited </span>CRISPR systems that lost the capacity to cleave target </span>DNA<span> and instead mediate RNA-guided transposition via CRISPR RNA. Conversely, the abundant transposon-associated, RNA-guided nucleases IscB and TnpB that appear to promote proliferation of IS</span></span></span><em>200</em>/IS<em>605</em> and IS<em>607</em><span> transposons were the likely evolutionary ancestors of type II and type V CRISPR systems, respectively. Thus, RNA-guided target recognition is a major biological phenomenon that connects MGE with host defense mechanisms. More RNA-guided defensive and MGE-associated functionalities are likely to be discovered.</span></p></div>\",\"PeriodicalId\":37400,\"journal\":{\"name\":\"Current Opinion in Systems Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2023-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10538440/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Systems Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452310023000306\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Systems Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452310023000306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
New faces of prokaryotic mobile genetic elements: Guide RNAs link transposition with host defense mechanisms
Most life forms harbor multiple, diverse mobile genetic elements (MGE) that widely differ in their rates and mechanisms of mobility. Recent findings on two classes of MGE in prokaryotes revealed a novel mechanism, RNA-guided transposition, where a transposon-encoded guide RNA directs the transposase to a unique site in the host genome. Tn7-like transposons, on multiple occasions, recruited CRISPR systems that lost the capacity to cleave target DNA and instead mediate RNA-guided transposition via CRISPR RNA. Conversely, the abundant transposon-associated, RNA-guided nucleases IscB and TnpB that appear to promote proliferation of IS200/IS605 and IS607 transposons were the likely evolutionary ancestors of type II and type V CRISPR systems, respectively. Thus, RNA-guided target recognition is a major biological phenomenon that connects MGE with host defense mechanisms. More RNA-guided defensive and MGE-associated functionalities are likely to be discovered.
期刊介绍:
Current Opinion in Systems Biology is a new systematic review journal that aims to provide specialists with a unique and educational platform to keep up-to-date with the expanding volume of information published in the field of Systems Biology. It publishes polished, concise and timely systematic reviews and opinion articles. In addition to describing recent trends, the authors are encouraged to give their subjective opinion on the topics discussed. As this is such a broad discipline, we have determined themed sections each of which is reviewed once a year. The following areas will be covered by Current Opinion in Systems Biology: -Genomics and Epigenomics -Gene Regulation -Metabolic Networks -Cancer and Systemic Diseases -Mathematical Modelling -Big Data Acquisition and Analysis -Systems Pharmacology and Physiology -Synthetic Biology -Stem Cells, Development, and Differentiation -Systems Biology of Mold Organisms -Systems Immunology and Host-Pathogen Interaction -Systems Ecology and Evolution