使用人口统计数据和机器学习技术预测儿科患者的最佳气管插管尺寸和深度。

IF 4.2 4区 医学 Q1 ANESTHESIOLOGY Korean Journal of Anesthesiology Pub Date : 2023-12-01 Epub Date: 2023-09-26 DOI:10.4097/kja.23501
Hyeonsik Kim, Hyun-Kyu Yoon, Hyeonhoon Lee, Chul-Woo Jung, Hyung-Chul Lee
{"title":"使用人口统计数据和机器学习技术预测儿科患者的最佳气管插管尺寸和深度。","authors":"Hyeonsik Kim, Hyun-Kyu Yoon, Hyeonhoon Lee, Chul-Woo Jung, Hyung-Chul Lee","doi":"10.4097/kja.23501","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Use of endotracheal tubes (ETTs) with appropriate size and depth can help minimize intubation-related complications in pediatric patients. Existing age-based formulae for selecting the optimal ETT size present several inaccuracies. We developed a machine learning model that predicts the optimal size and depth of ETTs in pediatric patients using demographic data, enabling clinical applications.</p><p><strong>Methods: </strong>Data from 37,057 patients younger than 12 years who underwent general anesthesia with endotracheal intubation were retrospectively analyzed. Gradient boosted regression tree (GBRT) model was developed and compared with traditional age-based formulae.</p><p><strong>Results: </strong>The GBRT model demonstrated the highest macro-averaged F1 scores of 0.502 (95% CI 0.486, 0.568) and 0.669 (95% CI 0.640, 0.694) for predicting the uncuffed and cuffed ETT size (internal diameter [ID]), outperforming the age-based formulae that yielded 0.163 (95% CI 0.140, 0.196, P < 0.001) and 0.392 (95% CI 0.378, 0.406, P < 0.001), respectively. In predicting the ETT depth (distance from tip to lip corner), the GBRT model showed the lowest mean absolute error (MAE) of 0.71 cm (95% CI 0.69, 0.72) and 0.72 cm (95% CI 0.70, 0.74) compared to the age-based formulae that showed an error of 1.18 cm (95% CI 1.16, 1.20, P < 0.001) and 1.34 cm (95% CI 1.31, 1.38, P < 0.001) for uncuffed and cuffed ETT, respectively.</p><p><strong>Conclusions: </strong>The GBRT model using only demographic data accurately predicted the ETT size and depth. If these results are validated, the model may be practical for predicting optimal ETT size and depth for pediatric patients.</p>","PeriodicalId":17855,"journal":{"name":"Korean Journal of Anesthesiology","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10718635/pdf/","citationCount":"0","resultStr":"{\"title\":\"Predicting optimal endotracheal tube size and depth in pediatric patients using demographic data and machine learning techniques.\",\"authors\":\"Hyeonsik Kim, Hyun-Kyu Yoon, Hyeonhoon Lee, Chul-Woo Jung, Hyung-Chul Lee\",\"doi\":\"10.4097/kja.23501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Use of endotracheal tubes (ETTs) with appropriate size and depth can help minimize intubation-related complications in pediatric patients. Existing age-based formulae for selecting the optimal ETT size present several inaccuracies. We developed a machine learning model that predicts the optimal size and depth of ETTs in pediatric patients using demographic data, enabling clinical applications.</p><p><strong>Methods: </strong>Data from 37,057 patients younger than 12 years who underwent general anesthesia with endotracheal intubation were retrospectively analyzed. Gradient boosted regression tree (GBRT) model was developed and compared with traditional age-based formulae.</p><p><strong>Results: </strong>The GBRT model demonstrated the highest macro-averaged F1 scores of 0.502 (95% CI 0.486, 0.568) and 0.669 (95% CI 0.640, 0.694) for predicting the uncuffed and cuffed ETT size (internal diameter [ID]), outperforming the age-based formulae that yielded 0.163 (95% CI 0.140, 0.196, P < 0.001) and 0.392 (95% CI 0.378, 0.406, P < 0.001), respectively. In predicting the ETT depth (distance from tip to lip corner), the GBRT model showed the lowest mean absolute error (MAE) of 0.71 cm (95% CI 0.69, 0.72) and 0.72 cm (95% CI 0.70, 0.74) compared to the age-based formulae that showed an error of 1.18 cm (95% CI 1.16, 1.20, P < 0.001) and 1.34 cm (95% CI 1.31, 1.38, P < 0.001) for uncuffed and cuffed ETT, respectively.</p><p><strong>Conclusions: </strong>The GBRT model using only demographic data accurately predicted the ETT size and depth. If these results are validated, the model may be practical for predicting optimal ETT size and depth for pediatric patients.</p>\",\"PeriodicalId\":17855,\"journal\":{\"name\":\"Korean Journal of Anesthesiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10718635/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Korean Journal of Anesthesiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.4097/kja.23501\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ANESTHESIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Journal of Anesthesiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4097/kja.23501","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ANESTHESIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:在儿科患者中,使用合适尺寸和深度的气管插管(ETT)有助于最大限度地减少与插管相关的并发症。现有的用于选择最佳ETT大小的基于年龄的公式存在一些不准确之处。我们开发了一个机器学习模型,该模型使用人口统计数据预测儿科患者ETT的最佳大小和深度,从而实现临床应用。方法:回顾性分析37057例12岁以下全麻气管插管患者的临床资料。建立了梯度增强回归树(GBRT)模型,并与传统的基于年龄的公式进行了比较。结果:GBRT模型在预测未翻边和翻边ETT尺寸(内径[ID])方面表现出最高的宏观平均F1得分,分别为0.502(95%CI 0.486-0.568)和0.669(95%CI 0.640-0.694),优于基于年龄的公式,该公式分别得出0.163(95%CI 0.140-0.196,P<0.001)和0.392(95%CI 0.378-0.406,<0.001)。在预测ETT深度(从尖端到唇角的距离)时,GBRT模型显示出最低的平均绝对误差(MAE),分别为0.71厘米(95%CI 0.69-0.72)和0.72厘米(95%CI 0.70-0.74),而基于年龄的公式显示,未翻边和翻边的ETT的误差分别为1.18厘米(95%置信区间1.16-1.20,P<0.001)和1.34厘米(95%可信区间1.31-1.38,P=0.001)。结论:仅使用人口统计学数据的GBRT模型准确预测了ETT的大小和深度。如果这些结果得到验证,该模型可能适用于预测儿科患者的最佳ETT大小和深度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predicting optimal endotracheal tube size and depth in pediatric patients using demographic data and machine learning techniques.

Background: Use of endotracheal tubes (ETTs) with appropriate size and depth can help minimize intubation-related complications in pediatric patients. Existing age-based formulae for selecting the optimal ETT size present several inaccuracies. We developed a machine learning model that predicts the optimal size and depth of ETTs in pediatric patients using demographic data, enabling clinical applications.

Methods: Data from 37,057 patients younger than 12 years who underwent general anesthesia with endotracheal intubation were retrospectively analyzed. Gradient boosted regression tree (GBRT) model was developed and compared with traditional age-based formulae.

Results: The GBRT model demonstrated the highest macro-averaged F1 scores of 0.502 (95% CI 0.486, 0.568) and 0.669 (95% CI 0.640, 0.694) for predicting the uncuffed and cuffed ETT size (internal diameter [ID]), outperforming the age-based formulae that yielded 0.163 (95% CI 0.140, 0.196, P < 0.001) and 0.392 (95% CI 0.378, 0.406, P < 0.001), respectively. In predicting the ETT depth (distance from tip to lip corner), the GBRT model showed the lowest mean absolute error (MAE) of 0.71 cm (95% CI 0.69, 0.72) and 0.72 cm (95% CI 0.70, 0.74) compared to the age-based formulae that showed an error of 1.18 cm (95% CI 1.16, 1.20, P < 0.001) and 1.34 cm (95% CI 1.31, 1.38, P < 0.001) for uncuffed and cuffed ETT, respectively.

Conclusions: The GBRT model using only demographic data accurately predicted the ETT size and depth. If these results are validated, the model may be practical for predicting optimal ETT size and depth for pediatric patients.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
6.90%
发文量
84
审稿时长
16 weeks
期刊最新文献
Controlled hypotension under rapid ventricular pacing technique in patients with cerebral arteriovenous malformation: a case report. Comparison of postoperative outcomes after cranial neurosurgery using propofol-based total intravenous anesthesia versus inhalation anesthesia: a nationwide cohort study in South Korea. Comparison of remimazolam and midazolam for preventing intraoperative nausea and vomiting during cesarean section under spinal anesthesia: a randomized controlled trial. Current evidence on the use of sugammadex for neuromuscular blockade antagonism during electroconvulsive therapy - a narrative review. Dexmedetomidine alleviates CoCl2-induced hypoxic cellular damage in INS-1 cells by regulating autophagy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1