回顾地下水污染物的生物修复:40多年的调查为实现目标提供了见解。

Greg B Davis
{"title":"回顾地下水污染物的生物修复:40多年的调查为实现目标提供了见解。","authors":"Greg B Davis","doi":"10.31083/j.fbe1503016","DOIUrl":null,"url":null,"abstract":"<p><p>Biodegradation and biotransformation of contaminants in groundwater commonly occurs naturally. However, natural biodegradation rates can be slow leading to elongated contaminant plumes and prolonged risks that demand greater remedial intervention. Enhancement of the biodegradation of contaminants in groundwater can be induced by the addition of amendments to change the geochemical conditions to those that are more favorable for indigenous or added biota. Enhancing biodegradation requires collocation of the contaminant of concern with the 'right' microbial communities under the 'right' geochemical conditions, so that the microbiota thrive and bio-transform, degrade or lock up the contaminant of interest. This is most easily achievable at laboratory or bench scale where mixing is easily performed, and mass transfer limitations are minimized. However, inducing such changes at field scale in aquifers is non-trivial - amendments do not easily mix into groundwater because it is a laminar (non-turbulent) and low-energy flow environment. Bioaugmentation of cultured or genetically modified organisms have also been considered to add to groundwater to enhance contaminant degradation rates. Here we provide an overview of research studies over approximately 40 years that highlight the progression of understanding from natural biodegradation of plumes in groundwater to active bioremediation efforts that have been variably successful at field scale. Investigated contaminants providing insights include petroleum hydrocarbons, chlorinated and brominated hydrocarbons, ammonium, metals, munition compounds, atrazine and per- and polyfluorinated alkyl substances. The redox and electron acceptor/donor conditions that are inducive to biodegradation for a range of contaminants are highlighted. Biodegradation is challenged by the availability of electron donors/acceptors in the core of plumes and on plume fringes. Cases for bioaugmentation are identified. A long history of investigations provides examples of the importance of amendment delivery mechanisms, scale-up from laboratory to field, and field-scale demonstration of the effectiveness of groundwater bioremediation technologies. Advantages and disadvantages of remedial approaches are tabulated. The value and contributions of integrative modelling advances are identified. The literature review and example cases provide a deep understanding of what scale of bioremediation might be achievable for groundwater plumes. Limitations to bioremediation strategies outlined here will help direct future efforts. Addressing the sources of groundwater plumes as well as bioremediation of the plume itself will achieve more effective outcomes. Twelve 'lessons learnt' are synthesized from the review.</p>","PeriodicalId":73068,"journal":{"name":"Frontiers in bioscience (Elite edition)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Reviewing the Bioremediation of Contaminants in Groundwater: Investigations over 40 Years Provide Insights into What's Achievable.\",\"authors\":\"Greg B Davis\",\"doi\":\"10.31083/j.fbe1503016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Biodegradation and biotransformation of contaminants in groundwater commonly occurs naturally. However, natural biodegradation rates can be slow leading to elongated contaminant plumes and prolonged risks that demand greater remedial intervention. Enhancement of the biodegradation of contaminants in groundwater can be induced by the addition of amendments to change the geochemical conditions to those that are more favorable for indigenous or added biota. Enhancing biodegradation requires collocation of the contaminant of concern with the 'right' microbial communities under the 'right' geochemical conditions, so that the microbiota thrive and bio-transform, degrade or lock up the contaminant of interest. This is most easily achievable at laboratory or bench scale where mixing is easily performed, and mass transfer limitations are minimized. However, inducing such changes at field scale in aquifers is non-trivial - amendments do not easily mix into groundwater because it is a laminar (non-turbulent) and low-energy flow environment. Bioaugmentation of cultured or genetically modified organisms have also been considered to add to groundwater to enhance contaminant degradation rates. Here we provide an overview of research studies over approximately 40 years that highlight the progression of understanding from natural biodegradation of plumes in groundwater to active bioremediation efforts that have been variably successful at field scale. Investigated contaminants providing insights include petroleum hydrocarbons, chlorinated and brominated hydrocarbons, ammonium, metals, munition compounds, atrazine and per- and polyfluorinated alkyl substances. The redox and electron acceptor/donor conditions that are inducive to biodegradation for a range of contaminants are highlighted. Biodegradation is challenged by the availability of electron donors/acceptors in the core of plumes and on plume fringes. Cases for bioaugmentation are identified. A long history of investigations provides examples of the importance of amendment delivery mechanisms, scale-up from laboratory to field, and field-scale demonstration of the effectiveness of groundwater bioremediation technologies. Advantages and disadvantages of remedial approaches are tabulated. The value and contributions of integrative modelling advances are identified. The literature review and example cases provide a deep understanding of what scale of bioremediation might be achievable for groundwater plumes. Limitations to bioremediation strategies outlined here will help direct future efforts. Addressing the sources of groundwater plumes as well as bioremediation of the plume itself will achieve more effective outcomes. Twelve 'lessons learnt' are synthesized from the review.</p>\",\"PeriodicalId\":73068,\"journal\":{\"name\":\"Frontiers in bioscience (Elite edition)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in bioscience (Elite edition)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31083/j.fbe1503016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in bioscience (Elite edition)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31083/j.fbe1503016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

地下水中污染物的生物降解和生物转化通常是自然发生的。然而,自然生物降解速度可能较慢,导致污染物羽流延长,风险延长,需要更大的补救干预。通过添加改良剂,将地球化学条件改变为对本地或添加的生物群更有利的条件,可以促进地下水中污染物的生物降解。加强生物降解需要在“正确”的地球化学条件下将关注的污染物与“正确”微生物群落相结合,以便微生物群茁壮成长,并对关注的污染物进行生物转化、降解或锁定。这在实验室或台架规模下是最容易实现的,在那里可以容易地进行混合,并将传质限制降至最低。然而,在含水层的现场规模上引发这种变化并非易事——修正案不容易混入地下水,因为它是一个层流(非湍流)和低能流环境。培养或转基因生物的生物强化也被认为可以添加到地下水中,以提高污染物的降解率。在这里,我们概述了近40年来的研究,这些研究强调了从地下水羽状物的自然生物降解到在现场规模上取得不同成功的积极生物修复工作的理解进展。提供见解的调查污染物包括石油碳氢化合物、氯化和溴化碳氢化合物、铵、金属、军火化合物、阿特拉津以及全氟和多氟烷基物质。重点介绍了一系列污染物的氧化还原和电子受体/供体条件,这些条件有助于生物降解。羽流核心和羽流边缘电子供体/受体的可用性对生物降解提出了挑战。确定了生物强化的案例。长期的调查提供了修正剂递送机制的重要性、从实验室到现场的扩大以及地下水生物修复技术有效性的现场规模证明的例子。表中列出了补救方法的优点和缺点。确定了综合建模进步的价值和贡献。文献综述和示例案例深入了解了地下水羽状物的生物修复规模。这里概述的生物修复策略的局限性将有助于指导未来的努力。解决地下水羽状物的来源以及羽状物本身的生物修复将取得更有效的结果。审查总结了12个“经验教训”。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reviewing the Bioremediation of Contaminants in Groundwater: Investigations over 40 Years Provide Insights into What's Achievable.

Biodegradation and biotransformation of contaminants in groundwater commonly occurs naturally. However, natural biodegradation rates can be slow leading to elongated contaminant plumes and prolonged risks that demand greater remedial intervention. Enhancement of the biodegradation of contaminants in groundwater can be induced by the addition of amendments to change the geochemical conditions to those that are more favorable for indigenous or added biota. Enhancing biodegradation requires collocation of the contaminant of concern with the 'right' microbial communities under the 'right' geochemical conditions, so that the microbiota thrive and bio-transform, degrade or lock up the contaminant of interest. This is most easily achievable at laboratory or bench scale where mixing is easily performed, and mass transfer limitations are minimized. However, inducing such changes at field scale in aquifers is non-trivial - amendments do not easily mix into groundwater because it is a laminar (non-turbulent) and low-energy flow environment. Bioaugmentation of cultured or genetically modified organisms have also been considered to add to groundwater to enhance contaminant degradation rates. Here we provide an overview of research studies over approximately 40 years that highlight the progression of understanding from natural biodegradation of plumes in groundwater to active bioremediation efforts that have been variably successful at field scale. Investigated contaminants providing insights include petroleum hydrocarbons, chlorinated and brominated hydrocarbons, ammonium, metals, munition compounds, atrazine and per- and polyfluorinated alkyl substances. The redox and electron acceptor/donor conditions that are inducive to biodegradation for a range of contaminants are highlighted. Biodegradation is challenged by the availability of electron donors/acceptors in the core of plumes and on plume fringes. Cases for bioaugmentation are identified. A long history of investigations provides examples of the importance of amendment delivery mechanisms, scale-up from laboratory to field, and field-scale demonstration of the effectiveness of groundwater bioremediation technologies. Advantages and disadvantages of remedial approaches are tabulated. The value and contributions of integrative modelling advances are identified. The literature review and example cases provide a deep understanding of what scale of bioremediation might be achievable for groundwater plumes. Limitations to bioremediation strategies outlined here will help direct future efforts. Addressing the sources of groundwater plumes as well as bioremediation of the plume itself will achieve more effective outcomes. Twelve 'lessons learnt' are synthesized from the review.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Quercetin, the Potential Powerful Flavonoid for Human and Food: A Review. Streptomyces as a Novel Biotool for Azo Pigments Remediation in Contaminated Scenarios. Biotechnological Advances Utilizing Aptamers and Peptides Refining PD-L1 Targeting. Obtaining Melanin-Synthesizing Strains of Bacillus thuringiensis and their Use for Biological Preparations. Implementation of a Macroporous Polyhydroxyethylmethacrylate Cryogel-Based Mini-Bioreactor System to Improve Monoclonal Antibody Production.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1