人类β细胞网络的多级同步。

Frontiers in network physiology Pub Date : 2023-09-22 eCollection Date: 2023-01-01 DOI:10.3389/fnetp.2023.1264395
Nicole Luchetti, Simonetta Filippi, Alessandro Loppini
{"title":"人类β细胞网络的多级同步。","authors":"Nicole Luchetti, Simonetta Filippi, Alessandro Loppini","doi":"10.3389/fnetp.2023.1264395","DOIUrl":null,"url":null,"abstract":"<p><p><i>β</i>-cells within the endocrine pancreas are fundamental for glucose, lipid and protein homeostasis. Gap junctions between cells constitute the primary coupling mechanism through which cells synchronize their electrical and metabolic activities. This evidence is still only partially investigated through models and numerical simulations. In this contribution, we explore the effect of combined electrical and metabolic coupling in <i>β</i>-cell clusters using a detailed biophysical model. We add heterogeneity and stochasticity to realistically reproduce <i>β</i>-cell dynamics and study networks mimicking arrangements of <i>β</i>-cells within human pancreatic islets. Model simulations are performed over different couplings and heterogeneities, analyzing emerging synchronization at the membrane potential, calcium, and metabolites levels. To describe network synchronization, we use the formalism of multiplex networks and investigate functional network properties and multiplex synchronization motifs over the structural, electrical, and metabolic layers. Our results show that metabolic coupling can support slow wave propagation in human islets, that combined electrical and metabolic synchronization is realized in small aggregates, and that metabolic long-range correlation is more pronounced with respect to the electrical one.</p>","PeriodicalId":73092,"journal":{"name":"Frontiers in network physiology","volume":"3 ","pages":"1264395"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10557430/pdf/","citationCount":"0","resultStr":"{\"title\":\"Multilevel synchronization of human <i>β</i>-cells networks.\",\"authors\":\"Nicole Luchetti, Simonetta Filippi, Alessandro Loppini\",\"doi\":\"10.3389/fnetp.2023.1264395\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>β</i>-cells within the endocrine pancreas are fundamental for glucose, lipid and protein homeostasis. Gap junctions between cells constitute the primary coupling mechanism through which cells synchronize their electrical and metabolic activities. This evidence is still only partially investigated through models and numerical simulations. In this contribution, we explore the effect of combined electrical and metabolic coupling in <i>β</i>-cell clusters using a detailed biophysical model. We add heterogeneity and stochasticity to realistically reproduce <i>β</i>-cell dynamics and study networks mimicking arrangements of <i>β</i>-cells within human pancreatic islets. Model simulations are performed over different couplings and heterogeneities, analyzing emerging synchronization at the membrane potential, calcium, and metabolites levels. To describe network synchronization, we use the formalism of multiplex networks and investigate functional network properties and multiplex synchronization motifs over the structural, electrical, and metabolic layers. Our results show that metabolic coupling can support slow wave propagation in human islets, that combined electrical and metabolic synchronization is realized in small aggregates, and that metabolic long-range correlation is more pronounced with respect to the electrical one.</p>\",\"PeriodicalId\":73092,\"journal\":{\"name\":\"Frontiers in network physiology\",\"volume\":\"3 \",\"pages\":\"1264395\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10557430/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in network physiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fnetp.2023.1264395\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in network physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fnetp.2023.1264395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

胰腺内分泌中的β细胞是葡萄糖、脂质和蛋白质稳态的基础。细胞之间的间隙连接构成了主要的耦合机制,细胞通过该机制同步其电活动和代谢活动。这一证据仍然只是通过模型和数值模拟进行了部分研究。在这篇文章中,我们使用详细的生物物理模型探索了β细胞簇中电和代谢耦合的影响。我们增加了异质性和随机性,以真实地再现β细胞动力学,并研究模拟人类胰岛内β细胞排列的网络。在不同的耦合和非均质性上进行模型模拟,分析膜电位、钙和代谢物水平上出现的同步现象。为了描述网络同步,我们使用了多重网络的形式,并研究了结构、电学和代谢层上的功能网络特性和多重同步基序。我们的研究结果表明,代谢耦合可以支持人类胰岛中的慢波传播,在小聚集体中实现了电和代谢的联合同步,并且代谢的长程相关性相对于电的相关性更明显。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multilevel synchronization of human β-cells networks.

β-cells within the endocrine pancreas are fundamental for glucose, lipid and protein homeostasis. Gap junctions between cells constitute the primary coupling mechanism through which cells synchronize their electrical and metabolic activities. This evidence is still only partially investigated through models and numerical simulations. In this contribution, we explore the effect of combined electrical and metabolic coupling in β-cell clusters using a detailed biophysical model. We add heterogeneity and stochasticity to realistically reproduce β-cell dynamics and study networks mimicking arrangements of β-cells within human pancreatic islets. Model simulations are performed over different couplings and heterogeneities, analyzing emerging synchronization at the membrane potential, calcium, and metabolites levels. To describe network synchronization, we use the formalism of multiplex networks and investigate functional network properties and multiplex synchronization motifs over the structural, electrical, and metabolic layers. Our results show that metabolic coupling can support slow wave propagation in human islets, that combined electrical and metabolic synchronization is realized in small aggregates, and that metabolic long-range correlation is more pronounced with respect to the electrical one.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
0
期刊最新文献
Emerging cancer therapies: targeting physiological networks and cellular bioelectrical differences with non-thermal systemic electromagnetic fields in the human body - a comprehensive review. Significant nocturnal wakefulness after sleep onset in metabolic dysfunction-associated steatotic liver disease. Networks through the lens of high-frequency oscillations. Constructing representative group networks from tractography: lessons from a dynamical approach. Physiological signal analysis and open science using the Julia language and associated software.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1