德尔塔严重急性呼吸系统综合征冠状病毒2型s2m结构、动力学和熵:G15U突变的后果。

IF 3.7 Q2 CHEMISTRY, PHYSICAL ACS Physical Chemistry Au Pub Date : 2023-05-17 DOI:10.1021/acsphyschemau.3c00008
Joseph A. Makowski, Adam H. Kensinger, Caylee L. Cunningham, Caleb J. Frye, Morgan Shine, Patrick E. Lackey, Mihaela Rita Mihailescu and Jeffrey D. Evanseck*, 
{"title":"德尔塔严重急性呼吸系统综合征冠状病毒2型s2m结构、动力学和熵:G15U突变的后果。","authors":"Joseph A. Makowski,&nbsp;Adam H. Kensinger,&nbsp;Caylee L. Cunningham,&nbsp;Caleb J. Frye,&nbsp;Morgan Shine,&nbsp;Patrick E. Lackey,&nbsp;Mihaela Rita Mihailescu and Jeffrey D. Evanseck*,&nbsp;","doi":"10.1021/acsphyschemau.3c00008","DOIUrl":null,"url":null,"abstract":"<p >Bioinformatic analysis of the Delta SARS-CoV-2 genome reveals a single nucleotide mutation (G15U) in the stem-loop II motif (s2m) relative to ancestral SARS-CoV-2. Despite sequence similarity, unexpected differences between SARS-CoV-2 and Delta SARS-CoV-2 s2m homodimerization experiments require the discovery of unknown structural and thermodynamic changes necessary to rationalize the data. Using our reported SARS-CoV-2 s2m model, we induced the G15U substitution and performed 3.5 microseconds of unbiased molecular dynamics simulation at 283 and 310 K. The resultant Delta s2m adopted a secondary structure consistent with our reported NMR data, resulting in significant deviations in the tertiary structure and dynamics from our SARS-CoV-2 s2m model. First, we find differences in the overall three-dimensional structure, where the characteristic 90° L-shaped kink of the SARS-CoV-2 s2m did not form in the Delta s2m resulting in a “linear” hairpin with limited bending dynamics. Delta s2m helical parameters are calculated to align closely with A-form RNA, effectively eliminating a hinge point to form the L-shape kink by correcting an upper stem defect in SARS-CoV-2 induced by a noncanonical and dynamic G:A base pair. Ultimately, the shape difference rationalizes the migration differences in reported electrophoresis experiments. Second, increased fluctuation of the Delta s2m palindromic sequence, within the terminal loop, compared to SARS-CoV-2 s2m results in an estimated increase of entropy of 6.8 kcal/mol at 310 K relative to the SARS-CoV-2 s2m. The entropic difference offers a unique perspective on why the Delta s2m homodimerizes less spontaneously, forming fewer kissing dimers and extended duplexes compared to SARS-CoV-2. In this work, both the L-shape reduction and palindromic entropic penalty provides an explanation of our reported in vitro electrophoresis homodimerization results. Ultimately, the structural, dynamical, and entropic differences between the SARS-CoV-2 s2m and Delta s2m serve to establish a foundation for future studies of the s2m function in the viral lifecycle.</p>","PeriodicalId":29796,"journal":{"name":"ACS Physical Chemistry Au","volume":"3 5","pages":"434–443"},"PeriodicalIF":3.7000,"publicationDate":"2023-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsphyschemau.3c00008","citationCount":"0","resultStr":"{\"title\":\"Delta SARS-CoV-2 s2m Structure, Dynamics, and Entropy: Consequences of the G15U Mutation\",\"authors\":\"Joseph A. Makowski,&nbsp;Adam H. Kensinger,&nbsp;Caylee L. Cunningham,&nbsp;Caleb J. Frye,&nbsp;Morgan Shine,&nbsp;Patrick E. Lackey,&nbsp;Mihaela Rita Mihailescu and Jeffrey D. Evanseck*,&nbsp;\",\"doi\":\"10.1021/acsphyschemau.3c00008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Bioinformatic analysis of the Delta SARS-CoV-2 genome reveals a single nucleotide mutation (G15U) in the stem-loop II motif (s2m) relative to ancestral SARS-CoV-2. Despite sequence similarity, unexpected differences between SARS-CoV-2 and Delta SARS-CoV-2 s2m homodimerization experiments require the discovery of unknown structural and thermodynamic changes necessary to rationalize the data. Using our reported SARS-CoV-2 s2m model, we induced the G15U substitution and performed 3.5 microseconds of unbiased molecular dynamics simulation at 283 and 310 K. The resultant Delta s2m adopted a secondary structure consistent with our reported NMR data, resulting in significant deviations in the tertiary structure and dynamics from our SARS-CoV-2 s2m model. First, we find differences in the overall three-dimensional structure, where the characteristic 90° L-shaped kink of the SARS-CoV-2 s2m did not form in the Delta s2m resulting in a “linear” hairpin with limited bending dynamics. Delta s2m helical parameters are calculated to align closely with A-form RNA, effectively eliminating a hinge point to form the L-shape kink by correcting an upper stem defect in SARS-CoV-2 induced by a noncanonical and dynamic G:A base pair. Ultimately, the shape difference rationalizes the migration differences in reported electrophoresis experiments. Second, increased fluctuation of the Delta s2m palindromic sequence, within the terminal loop, compared to SARS-CoV-2 s2m results in an estimated increase of entropy of 6.8 kcal/mol at 310 K relative to the SARS-CoV-2 s2m. The entropic difference offers a unique perspective on why the Delta s2m homodimerizes less spontaneously, forming fewer kissing dimers and extended duplexes compared to SARS-CoV-2. In this work, both the L-shape reduction and palindromic entropic penalty provides an explanation of our reported in vitro electrophoresis homodimerization results. Ultimately, the structural, dynamical, and entropic differences between the SARS-CoV-2 s2m and Delta s2m serve to establish a foundation for future studies of the s2m function in the viral lifecycle.</p>\",\"PeriodicalId\":29796,\"journal\":{\"name\":\"ACS Physical Chemistry Au\",\"volume\":\"3 5\",\"pages\":\"434–443\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsphyschemau.3c00008\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Physical Chemistry Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsphyschemau.3c00008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Physical Chemistry Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsphyschemau.3c00008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

德尔塔严重急性呼吸系统综合征冠状病毒2型基因组的生物信息学分析显示,与祖先严重急性呼吸综合征冠状病毒2中的干环II基序(s2m)存在单核苷酸突变(G15U)。尽管序列相似,但严重急性呼吸系统综合征冠状病毒2型和德尔塔严重急性呼吸系冠状病毒2型s2m同源二聚实验之间的意外差异需要发现未知的结构和热力学变化,以使数据合理化。使用我们报道的严重急性呼吸系统综合征冠状病毒2型s2m模型,我们诱导了G15U取代,并在283和310 K下进行了3.5微秒的无偏分子动力学模拟。所得的德尔塔s2m采用了与我们报道的核磁共振数据一致的二级结构,导致三级结构和动力学与我们的严重急性急性呼吸系统疾病冠状病毒2型s2 m模型存在显著偏差。首先,我们发现了整体三维结构的差异,其中严重急性呼吸系统综合征冠状病毒2型s2m的特征性90°L形扭结没有在德尔塔s2m中形成,导致弯曲动力学有限的“线性”发夹。德尔塔s2m螺旋参数被计算为与A型RNA紧密对齐,通过校正由非经典和动态G:A碱基对诱导的严重急性呼吸系统综合征冠状病毒2型的上干缺陷,有效地消除了形成L型扭结的铰链点。最终,在报道的电泳实验中,形状差异使迁移差异合理化。其次,与严重急性呼吸系统综合征冠状病毒2型s2m相比,末端环内德尔塔s2m回文序列的波动增加,导致在310 K下,相对于严重急性呼吸系冠状病毒2型s2 m,熵估计增加6.8 kcal/mol。熵差异提供了一个独特的视角,解释为什么与严重急性呼吸系统综合征冠状病毒2型相比,德尔塔s2m同源二聚体的自发性较低,形成的接吻二聚体和延伸双链体较少。在这项工作中,L形还原和回文熵惩罚都为我们报道的体外电泳同源二聚结果提供了解释。最终,严重急性呼吸系统综合征冠状病毒2型s2m和德尔塔s2m之间的结构、动力学和熵差异为未来研究s2m在病毒生命周期中的功能奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Delta SARS-CoV-2 s2m Structure, Dynamics, and Entropy: Consequences of the G15U Mutation

Bioinformatic analysis of the Delta SARS-CoV-2 genome reveals a single nucleotide mutation (G15U) in the stem-loop II motif (s2m) relative to ancestral SARS-CoV-2. Despite sequence similarity, unexpected differences between SARS-CoV-2 and Delta SARS-CoV-2 s2m homodimerization experiments require the discovery of unknown structural and thermodynamic changes necessary to rationalize the data. Using our reported SARS-CoV-2 s2m model, we induced the G15U substitution and performed 3.5 microseconds of unbiased molecular dynamics simulation at 283 and 310 K. The resultant Delta s2m adopted a secondary structure consistent with our reported NMR data, resulting in significant deviations in the tertiary structure and dynamics from our SARS-CoV-2 s2m model. First, we find differences in the overall three-dimensional structure, where the characteristic 90° L-shaped kink of the SARS-CoV-2 s2m did not form in the Delta s2m resulting in a “linear” hairpin with limited bending dynamics. Delta s2m helical parameters are calculated to align closely with A-form RNA, effectively eliminating a hinge point to form the L-shape kink by correcting an upper stem defect in SARS-CoV-2 induced by a noncanonical and dynamic G:A base pair. Ultimately, the shape difference rationalizes the migration differences in reported electrophoresis experiments. Second, increased fluctuation of the Delta s2m palindromic sequence, within the terminal loop, compared to SARS-CoV-2 s2m results in an estimated increase of entropy of 6.8 kcal/mol at 310 K relative to the SARS-CoV-2 s2m. The entropic difference offers a unique perspective on why the Delta s2m homodimerizes less spontaneously, forming fewer kissing dimers and extended duplexes compared to SARS-CoV-2. In this work, both the L-shape reduction and palindromic entropic penalty provides an explanation of our reported in vitro electrophoresis homodimerization results. Ultimately, the structural, dynamical, and entropic differences between the SARS-CoV-2 s2m and Delta s2m serve to establish a foundation for future studies of the s2m function in the viral lifecycle.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
0.00%
发文量
0
期刊介绍: ACS Physical Chemistry Au is an open access journal which publishes original fundamental and applied research on all aspects of physical chemistry. The journal publishes new and original experimental computational and theoretical research of interest to physical chemists biophysical chemists chemical physicists physicists material scientists and engineers. An essential criterion for acceptance is that the manuscript provides new physical insight or develops new tools and methods of general interest. Some major topical areas include:Molecules Clusters and Aerosols; Biophysics Biomaterials Liquids and Soft Matter; Energy Materials and Catalysis
期刊最新文献
Issue Publication Information Issue Editorial Masthead Roundabout Mechanism of Ion–Molecule Nucleophilic Substitution Reactions Ultrafast Spin Relaxation of Charge Carriers in Strongly Quantum Confined Methylammonium Lead Bromide Perovskite Magic-Sized Clusters Direct Detection of Bound Water in Hydrated Powders of Lysozyme by Differential Scanning Calorimetry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1