Christopher JS. Hart , Andrew G. Riches , Snigdha Tiash , Rebecca Abraham , Keely Fayd’Herbe , Ellis Joch , Bilal Zulfiqar , Melissa L. Sykes , Vicky M. Avery , Jan Šlapeta , Sam Abraham , John H. Ryan , Tina S. Skinner-Adams
{"title":"Thieno[3,2-b]吡咯-5-甲酰胺作为十二指肠贾第鞭毛虫的有效和选择性抑制剂。","authors":"Christopher JS. Hart , Andrew G. Riches , Snigdha Tiash , Rebecca Abraham , Keely Fayd’Herbe , Ellis Joch , Bilal Zulfiqar , Melissa L. Sykes , Vicky M. Avery , Jan Šlapeta , Sam Abraham , John H. Ryan , Tina S. Skinner-Adams","doi":"10.1016/j.ijpddr.2023.09.002","DOIUrl":null,"url":null,"abstract":"<div><p><em>Giardia duodenalis</em> is the causative agent of the neglected diarrhoeal disease giardiasis. While often self-limiting, giardiasis is ubiquitous and impacts hundreds of millions of people annually. It is also a common gastro-intestinal disease of domestic pets, wildlife, and livestock animals. However, despite this impact, there is no vaccine for <em>Giardia</em> currently available. In addition, treatment relies on chemotherapies that are associated with increasing failure rates. To identify new treatment options for giardiasis we recently screened the Compounds Australia Scaffold Library for new chemotypes with selective anti-<em>Giardia</em> activity, identifying three compounds with sub-μM activity and promising selectivity. Here we extended these studies by examining the anti-<em>Giardia</em> activity of series CL9569 compounds. This compound series was of interest given the promising activity (IC<sub>50</sub> 1.2 μM) and selectivity demonstrated by representative compound, SN00798525 (<strong>1</strong>). Data from this work has identified an additional three thieno [3,2-b]pyrrole 5-carboxamides with anti-<em>Giardia</em> activity, including <strong>2</strong> which displayed potent cytocidal (IC<sub>50</sub> ≤ 10 nM) and selective activity against multiple <em>Giardia</em> strains, including representatives from both human-infecting assemblages and metronidazole resistant parasites. Preclinical studies in mice also demonstrated that <strong>2</strong> is well-tolerated, does not impact the normal gut microbiota and can reduce <em>Giardia</em> parasite burden in these animals.</p></div>","PeriodicalId":13775,"journal":{"name":"International Journal for Parasitology: Drugs and Drug Resistance","volume":"23 ","pages":"Pages 54-62"},"PeriodicalIF":4.1000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/c5/5b/main.PMC10560980.pdf","citationCount":"0","resultStr":"{\"title\":\"Thieno[3,2-b]pyrrole 5-carboxamides as potent and selective inhibitors of Giardia duodenalis\",\"authors\":\"Christopher JS. Hart , Andrew G. Riches , Snigdha Tiash , Rebecca Abraham , Keely Fayd’Herbe , Ellis Joch , Bilal Zulfiqar , Melissa L. Sykes , Vicky M. Avery , Jan Šlapeta , Sam Abraham , John H. Ryan , Tina S. Skinner-Adams\",\"doi\":\"10.1016/j.ijpddr.2023.09.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><em>Giardia duodenalis</em> is the causative agent of the neglected diarrhoeal disease giardiasis. While often self-limiting, giardiasis is ubiquitous and impacts hundreds of millions of people annually. It is also a common gastro-intestinal disease of domestic pets, wildlife, and livestock animals. However, despite this impact, there is no vaccine for <em>Giardia</em> currently available. In addition, treatment relies on chemotherapies that are associated with increasing failure rates. To identify new treatment options for giardiasis we recently screened the Compounds Australia Scaffold Library for new chemotypes with selective anti-<em>Giardia</em> activity, identifying three compounds with sub-μM activity and promising selectivity. Here we extended these studies by examining the anti-<em>Giardia</em> activity of series CL9569 compounds. This compound series was of interest given the promising activity (IC<sub>50</sub> 1.2 μM) and selectivity demonstrated by representative compound, SN00798525 (<strong>1</strong>). Data from this work has identified an additional three thieno [3,2-b]pyrrole 5-carboxamides with anti-<em>Giardia</em> activity, including <strong>2</strong> which displayed potent cytocidal (IC<sub>50</sub> ≤ 10 nM) and selective activity against multiple <em>Giardia</em> strains, including representatives from both human-infecting assemblages and metronidazole resistant parasites. Preclinical studies in mice also demonstrated that <strong>2</strong> is well-tolerated, does not impact the normal gut microbiota and can reduce <em>Giardia</em> parasite burden in these animals.</p></div>\",\"PeriodicalId\":13775,\"journal\":{\"name\":\"International Journal for Parasitology: Drugs and Drug Resistance\",\"volume\":\"23 \",\"pages\":\"Pages 54-62\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2023-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/c5/5b/main.PMC10560980.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Parasitology: Drugs and Drug Resistance\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211320723000295\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PARASITOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Parasitology: Drugs and Drug Resistance","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211320723000295","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PARASITOLOGY","Score":null,"Total":0}
Thieno[3,2-b]pyrrole 5-carboxamides as potent and selective inhibitors of Giardia duodenalis
Giardia duodenalis is the causative agent of the neglected diarrhoeal disease giardiasis. While often self-limiting, giardiasis is ubiquitous and impacts hundreds of millions of people annually. It is also a common gastro-intestinal disease of domestic pets, wildlife, and livestock animals. However, despite this impact, there is no vaccine for Giardia currently available. In addition, treatment relies on chemotherapies that are associated with increasing failure rates. To identify new treatment options for giardiasis we recently screened the Compounds Australia Scaffold Library for new chemotypes with selective anti-Giardia activity, identifying three compounds with sub-μM activity and promising selectivity. Here we extended these studies by examining the anti-Giardia activity of series CL9569 compounds. This compound series was of interest given the promising activity (IC50 1.2 μM) and selectivity demonstrated by representative compound, SN00798525 (1). Data from this work has identified an additional three thieno [3,2-b]pyrrole 5-carboxamides with anti-Giardia activity, including 2 which displayed potent cytocidal (IC50 ≤ 10 nM) and selective activity against multiple Giardia strains, including representatives from both human-infecting assemblages and metronidazole resistant parasites. Preclinical studies in mice also demonstrated that 2 is well-tolerated, does not impact the normal gut microbiota and can reduce Giardia parasite burden in these animals.
期刊介绍:
The International Journal for Parasitology – Drugs and Drug Resistance is one of a series of specialist, open access journals launched by the International Journal for Parasitology. It publishes the results of original research in the area of anti-parasite drug identification, development and evaluation, and parasite drug resistance. The journal also covers research into natural products as anti-parasitic agents, and bioactive parasite products. Studies can be aimed at unicellular or multicellular parasites of human or veterinary importance.