Raaju Sundhar Arul Saravanan, Keyru Serbara Bejigo and Sang-Jae Kim
{"title":"用于下一代锂离子电池的过渡金属氧化物纳米材料的范围和意义","authors":"Raaju Sundhar Arul Saravanan, Keyru Serbara Bejigo and Sang-Jae Kim","doi":"10.1039/D3QM00226H","DOIUrl":null,"url":null,"abstract":"<p >Nanomaterials are the wonder materials in many distinguished fields, yet their research in mainstream lithium-ion batteries is at initial stages. Polyanion-based cathode materials use nanostructuring to enhance their performance throughput, yet due to several property mismatches, the transition metal oxide system still lags in adapting nanomaterials. Due to such slow-paced development reason, this review addresses accumulated knowledge on transition metal oxide nanomaterial synthesis and their performance in applications as cathode materials in Li-ion batteries. Through this work, we aim to provide researchers with knowledge such as the present challenges to overcome and vast opportunities for working with nanomaterials as cathodes for next-generation Li-ion batteries.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 20","pages":" 4613-4634"},"PeriodicalIF":6.0000,"publicationDate":"2023-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scope and significance of transition metal oxide nanomaterials for next-generation Li-ion batteries\",\"authors\":\"Raaju Sundhar Arul Saravanan, Keyru Serbara Bejigo and Sang-Jae Kim\",\"doi\":\"10.1039/D3QM00226H\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Nanomaterials are the wonder materials in many distinguished fields, yet their research in mainstream lithium-ion batteries is at initial stages. Polyanion-based cathode materials use nanostructuring to enhance their performance throughput, yet due to several property mismatches, the transition metal oxide system still lags in adapting nanomaterials. Due to such slow-paced development reason, this review addresses accumulated knowledge on transition metal oxide nanomaterial synthesis and their performance in applications as cathode materials in Li-ion batteries. Through this work, we aim to provide researchers with knowledge such as the present challenges to overcome and vast opportunities for working with nanomaterials as cathodes for next-generation Li-ion batteries.</p>\",\"PeriodicalId\":86,\"journal\":{\"name\":\"Materials Chemistry Frontiers\",\"volume\":\" 20\",\"pages\":\" 4613-4634\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2023-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Chemistry Frontiers\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2023/qm/d3qm00226h\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry Frontiers","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/qm/d3qm00226h","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Scope and significance of transition metal oxide nanomaterials for next-generation Li-ion batteries
Nanomaterials are the wonder materials in many distinguished fields, yet their research in mainstream lithium-ion batteries is at initial stages. Polyanion-based cathode materials use nanostructuring to enhance their performance throughput, yet due to several property mismatches, the transition metal oxide system still lags in adapting nanomaterials. Due to such slow-paced development reason, this review addresses accumulated knowledge on transition metal oxide nanomaterial synthesis and their performance in applications as cathode materials in Li-ion batteries. Through this work, we aim to provide researchers with knowledge such as the present challenges to overcome and vast opportunities for working with nanomaterials as cathodes for next-generation Li-ion batteries.
期刊介绍:
Materials Chemistry Frontiers focuses on the synthesis and chemistry of exciting new materials, and the development of improved fabrication techniques. Characterisation and fundamental studies that are of broad appeal are also welcome.
This is the ideal home for studies of a significant nature that further the development of organic, inorganic, composite and nano-materials.