植物bZIP蛋白:在农业中的潜在应用——综述。

IF 1.9 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Current protein & peptide science Pub Date : 2024-01-01 DOI:10.2174/0113892037261763230925034348
Cláudia Regina Batista de Souza, Cleyson Pantoja Serrão, Nicolle Louise Ferreira Barros, Sávio Pinho Dos Reis, Deyvid Novaes Marques
{"title":"植物bZIP蛋白:在农业中的潜在应用——综述。","authors":"Cláudia Regina Batista de Souza, Cleyson Pantoja Serrão, Nicolle Louise Ferreira Barros, Sávio Pinho Dos Reis, Deyvid Novaes Marques","doi":"10.2174/0113892037261763230925034348","DOIUrl":null,"url":null,"abstract":"<p><p>With global climate changes and the increased demand for food due to expected world population growth, genetic improvement programs have aimed at producing crops with increased yield and tolerance to environmental stresses, such as drought, salinity, and pathogens. On the other hand, genetic improvement programs <i>via</i> biotechnology require candidate genes that confer traits of interest to be incorporated into improved crops. In this regard, genes encoding transcription factors (TFs) can be promising since they are proteins that transcriptionally regulate the expression of target genes related to the most diverse roles in the plant, including defense against stresses. Among TFs, bZIP (basic leucine zipper) proteins regulate many developmental and physiological processes in the plant, such as seed formation, fruit ripening, nutrient assimilation, and defense response to abiotic and biotic stresses. In this review, we aim to highlight the main advances in the potential use of bZIP TFs in the genetic improvement of crops. We address this potential mainly regarding crop tolerance to stresses and other agricultural traits, such as increased yield and fruit features.</p>","PeriodicalId":10859,"journal":{"name":"Current protein & peptide science","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plant bZIP Proteins: Potential use in Agriculture - A Review.\",\"authors\":\"Cláudia Regina Batista de Souza, Cleyson Pantoja Serrão, Nicolle Louise Ferreira Barros, Sávio Pinho Dos Reis, Deyvid Novaes Marques\",\"doi\":\"10.2174/0113892037261763230925034348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>With global climate changes and the increased demand for food due to expected world population growth, genetic improvement programs have aimed at producing crops with increased yield and tolerance to environmental stresses, such as drought, salinity, and pathogens. On the other hand, genetic improvement programs <i>via</i> biotechnology require candidate genes that confer traits of interest to be incorporated into improved crops. In this regard, genes encoding transcription factors (TFs) can be promising since they are proteins that transcriptionally regulate the expression of target genes related to the most diverse roles in the plant, including defense against stresses. Among TFs, bZIP (basic leucine zipper) proteins regulate many developmental and physiological processes in the plant, such as seed formation, fruit ripening, nutrient assimilation, and defense response to abiotic and biotic stresses. In this review, we aim to highlight the main advances in the potential use of bZIP TFs in the genetic improvement of crops. We address this potential mainly regarding crop tolerance to stresses and other agricultural traits, such as increased yield and fruit features.</p>\",\"PeriodicalId\":10859,\"journal\":{\"name\":\"Current protein & peptide science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current protein & peptide science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.2174/0113892037261763230925034348\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current protein & peptide science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/0113892037261763230925034348","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

随着全球气候变化和预期的世界人口增长对粮食的需求增加,基因改良计划旨在生产产量更高、对干旱、盐度和病原体等环境压力更耐受的作物。另一方面,通过生物技术进行的遗传改良计划需要将赋予感兴趣性状的候选基因纳入改良作物中。在这方面,编码转录因子(TF)的基因可能是有前景的,因为它们是转录调节靶基因表达的蛋白质,靶基因在植物中的作用最为多样,包括抵御胁迫。在转录因子中,bZIP(碱性亮氨酸拉链)蛋白调节植物的许多发育和生理过程,如种子形成、果实成熟、营养同化以及对非生物和生物胁迫的防御反应。在这篇综述中,我们旨在强调bZIP转录因子在作物遗传改良中的潜在应用的主要进展。我们主要针对作物对胁迫的耐受性和其他农业性状,如产量和果实特性的提高来解决这一潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Plant bZIP Proteins: Potential use in Agriculture - A Review.

With global climate changes and the increased demand for food due to expected world population growth, genetic improvement programs have aimed at producing crops with increased yield and tolerance to environmental stresses, such as drought, salinity, and pathogens. On the other hand, genetic improvement programs via biotechnology require candidate genes that confer traits of interest to be incorporated into improved crops. In this regard, genes encoding transcription factors (TFs) can be promising since they are proteins that transcriptionally regulate the expression of target genes related to the most diverse roles in the plant, including defense against stresses. Among TFs, bZIP (basic leucine zipper) proteins regulate many developmental and physiological processes in the plant, such as seed formation, fruit ripening, nutrient assimilation, and defense response to abiotic and biotic stresses. In this review, we aim to highlight the main advances in the potential use of bZIP TFs in the genetic improvement of crops. We address this potential mainly regarding crop tolerance to stresses and other agricultural traits, such as increased yield and fruit features.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current protein & peptide science
Current protein & peptide science 生物-生化与分子生物学
CiteScore
5.20
自引率
0.00%
发文量
73
审稿时长
6 months
期刊介绍: Current Protein & Peptide Science publishes full-length/mini review articles on specific aspects involving proteins, peptides, and interactions between the enzymes, the binding interactions of hormones and their receptors; the properties of transcription factors and other molecules that regulate gene expression; the reactions leading to the immune response; the process of signal transduction; the structure and function of proteins involved in the cytoskeleton and molecular motors; the properties of membrane channels and transporters; and the generation and storage of metabolic energy. In addition, reviews of experimental studies of protein folding and design are given special emphasis. Manuscripts submitted to Current Protein and Peptide Science should cover a field by discussing research from the leading laboratories in a field and should pose questions for future studies. Original papers, research articles and letter articles/short communications are not considered for publication in Current Protein & Peptide Science.
期刊最新文献
Comparative Study of Lactogenic Effect and Milk Mutritional Density of Oral Galactagogues in Female Rabbit. Diet-induced Obesity: Pathophysiology, Consequences and Target Specific Therapeutic Strategies. Ferritin Hinders Ferroptosis in Non-Tumorous Diseases: Regulatory Mechanisms and Potential Consequences. Unveiling the Emerging Role of Klotho: A Comprehensive Narrative Review of an Anti-aging Factor in Human Fertility. Utilizing AfDesign for Developing a Small Molecule Inhibitor of PICK 1-PDZ.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1