Yang Liu, Huiqing Long, Xiaogang Zhong, Li Yan, Lu Yang, Yingying Zhang, Fangzhi Lou, Shihong Luo, Xin Jin
{"title":"口腔鳞状细胞癌m6A修饰的MeRIP测序综合分析。","authors":"Yang Liu, Huiqing Long, Xiaogang Zhong, Li Yan, Lu Yang, Yingying Zhang, Fangzhi Lou, Shihong Luo, Xin Jin","doi":"10.1266/ggs.22-00162","DOIUrl":null,"url":null,"abstract":"<p><p>N6-methyladenosine (m6A) modifications are the most abundant internal modifications of mRNA and have a significant role in various cancers; however, the m6A methylome profile of oral squamous cell carcinoma (OSCC) in the mRNA-wide remains unknown. In this study, we examined the relationship between m6A and OSCC. Four pairs of OSCC and adjacent normal tissues were compared by Methylated RNA immunoprecipitation sequencing (MeRIP-seq). Gene Ontology, Kyoto Encyclopedia of Genes and Genomes (KEGG), and Ingenuity Pathway Analysis (IPA) analyses were used to further analyze the MeRIP-seq data. A total of 2,348 different m6A peaks were identified in the OSCC group, including 85 m6A upregulated peaks and 2,263 m6A downregulated peaks. Differentially methylated m6A binding sites were enriched in the coding sequence in proximity to the stop codon of both groups. KEGG analysis revealed genes with upregulated m6A-modified sites in the OSCC group, which were prominently associated with the forkhead box O (FOXO) signaling pathway. Genes containing downregulated m6A-modified sites were significantly correlated with the PI3K/Akt signaling pathway, spliceosome, protein processing in the endoplasmic reticulum, and endocytosis. IPA analysis indicated that several genes with differential methylation peaks form networks with m6A regulators. Overall, this study established the mRNA-wide m6A map for human OSCC and indicated the potential links between OSCC and N6-methyladenosine modification.</p>","PeriodicalId":12690,"journal":{"name":"Genes & genetic systems","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comprehensive analysis of m6A modifications in oral squamous cell carcinoma by MeRIP sequencing.\",\"authors\":\"Yang Liu, Huiqing Long, Xiaogang Zhong, Li Yan, Lu Yang, Yingying Zhang, Fangzhi Lou, Shihong Luo, Xin Jin\",\"doi\":\"10.1266/ggs.22-00162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>N6-methyladenosine (m6A) modifications are the most abundant internal modifications of mRNA and have a significant role in various cancers; however, the m6A methylome profile of oral squamous cell carcinoma (OSCC) in the mRNA-wide remains unknown. In this study, we examined the relationship between m6A and OSCC. Four pairs of OSCC and adjacent normal tissues were compared by Methylated RNA immunoprecipitation sequencing (MeRIP-seq). Gene Ontology, Kyoto Encyclopedia of Genes and Genomes (KEGG), and Ingenuity Pathway Analysis (IPA) analyses were used to further analyze the MeRIP-seq data. A total of 2,348 different m6A peaks were identified in the OSCC group, including 85 m6A upregulated peaks and 2,263 m6A downregulated peaks. Differentially methylated m6A binding sites were enriched in the coding sequence in proximity to the stop codon of both groups. KEGG analysis revealed genes with upregulated m6A-modified sites in the OSCC group, which were prominently associated with the forkhead box O (FOXO) signaling pathway. Genes containing downregulated m6A-modified sites were significantly correlated with the PI3K/Akt signaling pathway, spliceosome, protein processing in the endoplasmic reticulum, and endocytosis. IPA analysis indicated that several genes with differential methylation peaks form networks with m6A regulators. Overall, this study established the mRNA-wide m6A map for human OSCC and indicated the potential links between OSCC and N6-methyladenosine modification.</p>\",\"PeriodicalId\":12690,\"journal\":{\"name\":\"Genes & genetic systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genes & genetic systems\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1266/ggs.22-00162\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/10/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes & genetic systems","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1266/ggs.22-00162","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/6 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Comprehensive analysis of m6A modifications in oral squamous cell carcinoma by MeRIP sequencing.
N6-methyladenosine (m6A) modifications are the most abundant internal modifications of mRNA and have a significant role in various cancers; however, the m6A methylome profile of oral squamous cell carcinoma (OSCC) in the mRNA-wide remains unknown. In this study, we examined the relationship between m6A and OSCC. Four pairs of OSCC and adjacent normal tissues were compared by Methylated RNA immunoprecipitation sequencing (MeRIP-seq). Gene Ontology, Kyoto Encyclopedia of Genes and Genomes (KEGG), and Ingenuity Pathway Analysis (IPA) analyses were used to further analyze the MeRIP-seq data. A total of 2,348 different m6A peaks were identified in the OSCC group, including 85 m6A upregulated peaks and 2,263 m6A downregulated peaks. Differentially methylated m6A binding sites were enriched in the coding sequence in proximity to the stop codon of both groups. KEGG analysis revealed genes with upregulated m6A-modified sites in the OSCC group, which were prominently associated with the forkhead box O (FOXO) signaling pathway. Genes containing downregulated m6A-modified sites were significantly correlated with the PI3K/Akt signaling pathway, spliceosome, protein processing in the endoplasmic reticulum, and endocytosis. IPA analysis indicated that several genes with differential methylation peaks form networks with m6A regulators. Overall, this study established the mRNA-wide m6A map for human OSCC and indicated the potential links between OSCC and N6-methyladenosine modification.