Ali Osman Adıgüzel, Fatma Şen, Serpil Könen-Adıgüzel, Ahmet Erkan Kıdeyş, Arzu Karahan, Tuğrul Doruk, Münir Tunçer
{"title":"利用功能宏基因组学从微塑料相关微生物群中鉴定角质分解酯酶及其塑料降解潜力。","authors":"Ali Osman Adıgüzel, Fatma Şen, Serpil Könen-Adıgüzel, Ahmet Erkan Kıdeyş, Arzu Karahan, Tuğrul Doruk, Münir Tunçer","doi":"10.1007/s12033-023-00916-7","DOIUrl":null,"url":null,"abstract":"<p><p>Plastic pollution has threatened biodiversity and human health by shrinking habitats, reducing food quality, and limiting the activities of organisms. Therefore, global interest in discovering novel enzymes capable of degrading plastics has increased considerably. Within this context, the functional metagenomic approach, which allows for unlocking the functional potential of uncultivable microbial biodiversity, was used to discover a plastic-degrading enzyme. First, metagenomic libraries derived from microplastic-associated microbiota were screened for esterases capable of degrading both tributyrin and polycaprolactone. Clone KAD01 produced esterase highly active against p-nitrophenyl esters (C2-C16). The gene corresponding to the enzyme activity showed moderate identity (≤ 55.94%) to any known esterases/cutinases. The gene was extracellularly expressed with a 6× histidine tag in E. coli BL21(DE3), extracellularly. Titer of the enzyme (CEstKAD01) was raised from 21.32 to 35.17 U/mL by the statistical optimization of expression conditions and media components. CEstKAD01 was most active at pH 7.0 and 30 °C. It was noteworthy stable over a wide pH (6.0-10.0) and temperature (20-50 °C). The enzyme was active and stable in elevated NaCl concentrations up to 12% (w/v). Pre-incubation of CEstKAD01 with Mg<sup>2+</sup>, Mn<sup>2+</sup>, and Ca<sup>2+</sup> increased the enzyme activity. CEstKAD01 displayed an excellent tolerance against various chemicals and solvents. It was determined that 1 mg of the enzyme caused the release of 5.39 ± 0.18 mM fatty acids from 1 g apple cutin in 120 min. K<sub>m</sub> and V<sub>max</sub> values of CEstKAD01 against p-nitrophenyl butyrate were calculated to be 1.48 mM and 20.37 µmol/min, respectively. The enzyme caused 6.94 ± 0.55, 8.71 ± 0.56, 7.47 ± 0.47, and 9.22 ± 0.18% of weight loss in polystyrene, high-density polyethylene, low-density polyethylene, and polyvinyl chloride after 30-day incubation. The scanning electron microscopy (SEM) analysis indicated the formation of holes and pits on the plastic surfaces supporting the degradation. In addition, the change in chemical structure in plastics treated with the enzyme was determined by Fourier Transform Infrared Spectroscopy (FTIR) analysis. Finally, the degradation products were found to have no genotoxic potential. To our knowledge, no cutinolytic esterase with the potential to degrade polystyrene (PS), high-density polyethylene (HDPE), low-density polyethylene (LDPE), and polyvinyl chloride (PVC) has been identified from metagenomes derived from microplastic-associated microbiota.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":"2995-3012"},"PeriodicalIF":2.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of Cutinolytic Esterase from Microplastic-Associated Microbiota Using Functional Metagenomics and Its Plastic Degrading Potential.\",\"authors\":\"Ali Osman Adıgüzel, Fatma Şen, Serpil Könen-Adıgüzel, Ahmet Erkan Kıdeyş, Arzu Karahan, Tuğrul Doruk, Münir Tunçer\",\"doi\":\"10.1007/s12033-023-00916-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Plastic pollution has threatened biodiversity and human health by shrinking habitats, reducing food quality, and limiting the activities of organisms. Therefore, global interest in discovering novel enzymes capable of degrading plastics has increased considerably. Within this context, the functional metagenomic approach, which allows for unlocking the functional potential of uncultivable microbial biodiversity, was used to discover a plastic-degrading enzyme. First, metagenomic libraries derived from microplastic-associated microbiota were screened for esterases capable of degrading both tributyrin and polycaprolactone. Clone KAD01 produced esterase highly active against p-nitrophenyl esters (C2-C16). The gene corresponding to the enzyme activity showed moderate identity (≤ 55.94%) to any known esterases/cutinases. The gene was extracellularly expressed with a 6× histidine tag in E. coli BL21(DE3), extracellularly. Titer of the enzyme (CEstKAD01) was raised from 21.32 to 35.17 U/mL by the statistical optimization of expression conditions and media components. CEstKAD01 was most active at pH 7.0 and 30 °C. It was noteworthy stable over a wide pH (6.0-10.0) and temperature (20-50 °C). The enzyme was active and stable in elevated NaCl concentrations up to 12% (w/v). Pre-incubation of CEstKAD01 with Mg<sup>2+</sup>, Mn<sup>2+</sup>, and Ca<sup>2+</sup> increased the enzyme activity. CEstKAD01 displayed an excellent tolerance against various chemicals and solvents. It was determined that 1 mg of the enzyme caused the release of 5.39 ± 0.18 mM fatty acids from 1 g apple cutin in 120 min. K<sub>m</sub> and V<sub>max</sub> values of CEstKAD01 against p-nitrophenyl butyrate were calculated to be 1.48 mM and 20.37 µmol/min, respectively. The enzyme caused 6.94 ± 0.55, 8.71 ± 0.56, 7.47 ± 0.47, and 9.22 ± 0.18% of weight loss in polystyrene, high-density polyethylene, low-density polyethylene, and polyvinyl chloride after 30-day incubation. The scanning electron microscopy (SEM) analysis indicated the formation of holes and pits on the plastic surfaces supporting the degradation. In addition, the change in chemical structure in plastics treated with the enzyme was determined by Fourier Transform Infrared Spectroscopy (FTIR) analysis. Finally, the degradation products were found to have no genotoxic potential. To our knowledge, no cutinolytic esterase with the potential to degrade polystyrene (PS), high-density polyethylene (HDPE), low-density polyethylene (LDPE), and polyvinyl chloride (PVC) has been identified from metagenomes derived from microplastic-associated microbiota.</p>\",\"PeriodicalId\":18865,\"journal\":{\"name\":\"Molecular Biotechnology\",\"volume\":\" \",\"pages\":\"2995-3012\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Biotechnology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12033-023-00916-7\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/10/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12033-023-00916-7","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/10 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Identification of Cutinolytic Esterase from Microplastic-Associated Microbiota Using Functional Metagenomics and Its Plastic Degrading Potential.
Plastic pollution has threatened biodiversity and human health by shrinking habitats, reducing food quality, and limiting the activities of organisms. Therefore, global interest in discovering novel enzymes capable of degrading plastics has increased considerably. Within this context, the functional metagenomic approach, which allows for unlocking the functional potential of uncultivable microbial biodiversity, was used to discover a plastic-degrading enzyme. First, metagenomic libraries derived from microplastic-associated microbiota were screened for esterases capable of degrading both tributyrin and polycaprolactone. Clone KAD01 produced esterase highly active against p-nitrophenyl esters (C2-C16). The gene corresponding to the enzyme activity showed moderate identity (≤ 55.94%) to any known esterases/cutinases. The gene was extracellularly expressed with a 6× histidine tag in E. coli BL21(DE3), extracellularly. Titer of the enzyme (CEstKAD01) was raised from 21.32 to 35.17 U/mL by the statistical optimization of expression conditions and media components. CEstKAD01 was most active at pH 7.0 and 30 °C. It was noteworthy stable over a wide pH (6.0-10.0) and temperature (20-50 °C). The enzyme was active and stable in elevated NaCl concentrations up to 12% (w/v). Pre-incubation of CEstKAD01 with Mg2+, Mn2+, and Ca2+ increased the enzyme activity. CEstKAD01 displayed an excellent tolerance against various chemicals and solvents. It was determined that 1 mg of the enzyme caused the release of 5.39 ± 0.18 mM fatty acids from 1 g apple cutin in 120 min. Km and Vmax values of CEstKAD01 against p-nitrophenyl butyrate were calculated to be 1.48 mM and 20.37 µmol/min, respectively. The enzyme caused 6.94 ± 0.55, 8.71 ± 0.56, 7.47 ± 0.47, and 9.22 ± 0.18% of weight loss in polystyrene, high-density polyethylene, low-density polyethylene, and polyvinyl chloride after 30-day incubation. The scanning electron microscopy (SEM) analysis indicated the formation of holes and pits on the plastic surfaces supporting the degradation. In addition, the change in chemical structure in plastics treated with the enzyme was determined by Fourier Transform Infrared Spectroscopy (FTIR) analysis. Finally, the degradation products were found to have no genotoxic potential. To our knowledge, no cutinolytic esterase with the potential to degrade polystyrene (PS), high-density polyethylene (HDPE), low-density polyethylene (LDPE), and polyvinyl chloride (PVC) has been identified from metagenomes derived from microplastic-associated microbiota.
期刊介绍:
Molecular Biotechnology publishes original research papers on the application of molecular biology to both basic and applied research in the field of biotechnology. Particular areas of interest include the following: stability and expression of cloned gene products, cell transformation, gene cloning systems and the production of recombinant proteins, protein purification and analysis, transgenic species, developmental biology, mutation analysis, the applications of DNA fingerprinting, RNA interference, and PCR technology, microarray technology, proteomics, mass spectrometry, bioinformatics, plant molecular biology, microbial genetics, gene probes and the diagnosis of disease, pharmaceutical and health care products, therapeutic agents, vaccines, gene targeting, gene therapy, stem cell technology and tissue engineering, antisense technology, protein engineering and enzyme technology, monoclonal antibodies, glycobiology and glycomics, and agricultural biotechnology.