Wenchao Shi, Tinghui Li, Huiwen Li, Juan Ren, Meiyu Lv, Qi Wang, Yaowu He, Yao Yu, Lijie Liu, Shoude Jin, Hong Chen
{"title":"生物信息学方法鉴定与新冠肺炎和特发性肺纤维化相关的中枢基因。","authors":"Wenchao Shi, Tinghui Li, Huiwen Li, Juan Ren, Meiyu Lv, Qi Wang, Yaowu He, Yao Yu, Lijie Liu, Shoude Jin, Hong Chen","doi":"10.1049/syb2.12080","DOIUrl":null,"url":null,"abstract":"<p>The coronavirus disease 2019 (COVID-19) has developed into a global health crisis. Pulmonary fibrosis, as one of the complications of SARS-CoV-2 infection, deserves attention. As COVID-19 is a new clinical entity that is constantly evolving, and many aspects of disease are remain unknown. The datasets of COVID-19 and idiopathic pulmonary fibrosis were obtained from the Gene Expression Omnibus. The hub genes were screened out using the Random Forest (RF) algorithm depending on the severity of patients with COVID-19. A risk prediction model was developed to assess the prognosis of patients infected with SARS-CoV-2, which was evaluated by another dataset. Six genes (named NELL2, GPR183, S100A8, ALPL, CD177, and IL1R2) may be associated with the development of PF in patients with severe SARS-CoV-2 infection. S100A8 is thought to be an important target gene that is closely associated with COVID-19 and pulmonary fibrosis. Construction of a neural network model was successfully predicted the prognosis of patients with COVID-19. With the increasing availability of COVID-19 datasets, bioinformatic methods can provide possible predictive targets for the diagnosis, treatment, and prognosis of the disease and show intervention directions for the development of clinical drugs and vaccines.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/syb2.12080","citationCount":"1","resultStr":"{\"title\":\"Bioinformatics approach to identify the hub gene associated with COVID-19 and idiopathic pulmonary fibrosis\",\"authors\":\"Wenchao Shi, Tinghui Li, Huiwen Li, Juan Ren, Meiyu Lv, Qi Wang, Yaowu He, Yao Yu, Lijie Liu, Shoude Jin, Hong Chen\",\"doi\":\"10.1049/syb2.12080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The coronavirus disease 2019 (COVID-19) has developed into a global health crisis. Pulmonary fibrosis, as one of the complications of SARS-CoV-2 infection, deserves attention. As COVID-19 is a new clinical entity that is constantly evolving, and many aspects of disease are remain unknown. The datasets of COVID-19 and idiopathic pulmonary fibrosis were obtained from the Gene Expression Omnibus. The hub genes were screened out using the Random Forest (RF) algorithm depending on the severity of patients with COVID-19. A risk prediction model was developed to assess the prognosis of patients infected with SARS-CoV-2, which was evaluated by another dataset. Six genes (named NELL2, GPR183, S100A8, ALPL, CD177, and IL1R2) may be associated with the development of PF in patients with severe SARS-CoV-2 infection. S100A8 is thought to be an important target gene that is closely associated with COVID-19 and pulmonary fibrosis. Construction of a neural network model was successfully predicted the prognosis of patients with COVID-19. With the increasing availability of COVID-19 datasets, bioinformatic methods can provide possible predictive targets for the diagnosis, treatment, and prognosis of the disease and show intervention directions for the development of clinical drugs and vaccines.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/syb2.12080\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/syb2.12080\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/syb2.12080","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Bioinformatics approach to identify the hub gene associated with COVID-19 and idiopathic pulmonary fibrosis
The coronavirus disease 2019 (COVID-19) has developed into a global health crisis. Pulmonary fibrosis, as one of the complications of SARS-CoV-2 infection, deserves attention. As COVID-19 is a new clinical entity that is constantly evolving, and many aspects of disease are remain unknown. The datasets of COVID-19 and idiopathic pulmonary fibrosis were obtained from the Gene Expression Omnibus. The hub genes were screened out using the Random Forest (RF) algorithm depending on the severity of patients with COVID-19. A risk prediction model was developed to assess the prognosis of patients infected with SARS-CoV-2, which was evaluated by another dataset. Six genes (named NELL2, GPR183, S100A8, ALPL, CD177, and IL1R2) may be associated with the development of PF in patients with severe SARS-CoV-2 infection. S100A8 is thought to be an important target gene that is closely associated with COVID-19 and pulmonary fibrosis. Construction of a neural network model was successfully predicted the prognosis of patients with COVID-19. With the increasing availability of COVID-19 datasets, bioinformatic methods can provide possible predictive targets for the diagnosis, treatment, and prognosis of the disease and show intervention directions for the development of clinical drugs and vaccines.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.