一个度量还是多个度量?完善了基于个体的景观遗传分析中景观抗性估计的分析框架。

IF 5.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular Ecology Resources Pub Date : 2023-10-11 DOI:10.1111/1755-0998.13876
William E. Peterman
{"title":"一个度量还是多个度量?完善了基于个体的景观遗传分析中景观抗性估计的分析框架。","authors":"William E. Peterman","doi":"10.1111/1755-0998.13876","DOIUrl":null,"url":null,"abstract":"<p>One of the allures of landscape genetics is the ability to leverage pairwise genetic distance metrics to infer how landscape features promote or constrain gene flow (i.e. landscape resistance surfaces). Critically, properly parameterized landscape resistance surfaces are foundational to applied conservation and management decisions. As such, there has been considerable effort expended assessing methods and metrics to estimate landscape resistance from genetic data (Balkenhol <i>et al</i>., <i>Ecography</i>, <i>32</i>, 2009, 818; Peterman <i>et al.</i>, <i>Landsc. Ecol.</i>, <i>34</i>, 2019, 2197; Shirk et al., <i>Mol. Ecol. Resour.</i>, <i>17</i>, 2017, 1308; Shirk et al., <i>Mol. Ecol. Resour.</i>, <i>18</i>, 2018, 55). Nonetheless, a primary challenge to assessing the effects of landscapes on gene flow is in the estimation of landscape resistance values, and this problem becomes increasingly challenging as more landscape features or land cover classes are considered. It quickly becomes infeasible to adequately assess the potential parameter space through manual or systematic assignment of resistance values. The development of ResistanceGA (Peterman, <i>Methods Ecol. Evol.</i>, <i>9</i>, 2018, 1638) provided a framework for using genetic algorithms to optimize landscape resistance values and identify the best statistical relationship between pairwise effective distances and genetic distances. ResistanceGA has seen extensive use in both population- and individual-based landscape genetic analyses. However, there has been relatively limited assessment of ResistanceGA's ability to identify the landscape features affecting gene flow (but see Peterman <i>et al.</i>, <i>Landsc. Ecol.</i>, <i>34</i>, 2019, 2197; Winiarski <i>et al.</i>, <i>Mol. Ecol. Resour</i>., <i>20</i>, 2020, 1583) or the sensitivity of ResistanceGA results to the choice of genetic distance metric used. In the current issue of <i>Molecular Ecology Resources</i>, Beninde <i>et al</i>. (2023) aim to address these knowledge gaps by examining the impact of individual-based genetic distance measures on landscape genetic inference.</p>","PeriodicalId":211,"journal":{"name":"Molecular Ecology Resources","volume":"24 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1755-0998.13876","citationCount":"0","resultStr":"{\"title\":\"One metric or many? Refining the analytical framework of landscape resistance estimation in individual-based landscape genetic analyses\",\"authors\":\"William E. Peterman\",\"doi\":\"10.1111/1755-0998.13876\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>One of the allures of landscape genetics is the ability to leverage pairwise genetic distance metrics to infer how landscape features promote or constrain gene flow (i.e. landscape resistance surfaces). Critically, properly parameterized landscape resistance surfaces are foundational to applied conservation and management decisions. As such, there has been considerable effort expended assessing methods and metrics to estimate landscape resistance from genetic data (Balkenhol <i>et al</i>., <i>Ecography</i>, <i>32</i>, 2009, 818; Peterman <i>et al.</i>, <i>Landsc. Ecol.</i>, <i>34</i>, 2019, 2197; Shirk et al., <i>Mol. Ecol. Resour.</i>, <i>17</i>, 2017, 1308; Shirk et al., <i>Mol. Ecol. Resour.</i>, <i>18</i>, 2018, 55). Nonetheless, a primary challenge to assessing the effects of landscapes on gene flow is in the estimation of landscape resistance values, and this problem becomes increasingly challenging as more landscape features or land cover classes are considered. It quickly becomes infeasible to adequately assess the potential parameter space through manual or systematic assignment of resistance values. The development of ResistanceGA (Peterman, <i>Methods Ecol. Evol.</i>, <i>9</i>, 2018, 1638) provided a framework for using genetic algorithms to optimize landscape resistance values and identify the best statistical relationship between pairwise effective distances and genetic distances. ResistanceGA has seen extensive use in both population- and individual-based landscape genetic analyses. However, there has been relatively limited assessment of ResistanceGA's ability to identify the landscape features affecting gene flow (but see Peterman <i>et al.</i>, <i>Landsc. Ecol.</i>, <i>34</i>, 2019, 2197; Winiarski <i>et al.</i>, <i>Mol. Ecol. Resour</i>., <i>20</i>, 2020, 1583) or the sensitivity of ResistanceGA results to the choice of genetic distance metric used. In the current issue of <i>Molecular Ecology Resources</i>, Beninde <i>et al</i>. (2023) aim to address these knowledge gaps by examining the impact of individual-based genetic distance measures on landscape genetic inference.</p>\",\"PeriodicalId\":211,\"journal\":{\"name\":\"Molecular Ecology Resources\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2023-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1755-0998.13876\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Ecology Resources\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1755-0998.13876\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology Resources","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1755-0998.13876","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

景观遗传学的吸引力之一是能够利用成对的遗传距离度量来推断景观特征如何促进或限制基因流动(即景观阻力表面)。至关重要的是,适当参数化的景观阻力表面是应用保护和管理决策的基础。因此,已经花费了大量的精力来评估方法和指标,以从遗传数据中估计景观抗性(Balkenhol等人,Ecography,32009818;Peterman等人,Landsc.Ecol.,3420192197;Shirk等人,Mol.Ecol.Resour.,1720171308;Shirk等人,Mol.Ecoll.Resour..,182018,55)。尽管如此,评估景观对基因流影响的主要挑战是估计景观阻力值,随着更多的景观特征或土地覆盖类别的考虑,这个问题变得越来越具有挑战性。通过手动或系统分配电阻值来充分评估潜在参数空间很快变得不可行。ResistanceGA的开发(Peterman,Methods Ecol.Evol.,920181638)为使用遗传算法优化景观抗性值并确定成对有效距离和遗传距离之间的最佳统计关系提供了一个框架。ResistanceGA在基于种群和个体的景观遗传分析中得到了广泛应用。然而,对ResistanceGA识别影响基因流的景观特征的能力的评估相对有限(但见Peterman等人,Landsc.Ecol.,3420192197;Winiarski等人,Mol.Ecol.Resour.,20201583)或ResistanceGA结果对所用遗传距离度量选择的敏感性。在当前的《分子生态学资源》杂志上,Beninde等人(2023)旨在通过研究基于个体的遗传距离测量对景观遗传推断的影响来解决这些知识差距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
One metric or many? Refining the analytical framework of landscape resistance estimation in individual-based landscape genetic analyses

One of the allures of landscape genetics is the ability to leverage pairwise genetic distance metrics to infer how landscape features promote or constrain gene flow (i.e. landscape resistance surfaces). Critically, properly parameterized landscape resistance surfaces are foundational to applied conservation and management decisions. As such, there has been considerable effort expended assessing methods and metrics to estimate landscape resistance from genetic data (Balkenhol et al., Ecography, 32, 2009, 818; Peterman et al., Landsc. Ecol., 34, 2019, 2197; Shirk et al., Mol. Ecol. Resour., 17, 2017, 1308; Shirk et al., Mol. Ecol. Resour., 18, 2018, 55). Nonetheless, a primary challenge to assessing the effects of landscapes on gene flow is in the estimation of landscape resistance values, and this problem becomes increasingly challenging as more landscape features or land cover classes are considered. It quickly becomes infeasible to adequately assess the potential parameter space through manual or systematic assignment of resistance values. The development of ResistanceGA (Peterman, Methods Ecol. Evol., 9, 2018, 1638) provided a framework for using genetic algorithms to optimize landscape resistance values and identify the best statistical relationship between pairwise effective distances and genetic distances. ResistanceGA has seen extensive use in both population- and individual-based landscape genetic analyses. However, there has been relatively limited assessment of ResistanceGA's ability to identify the landscape features affecting gene flow (but see Peterman et al., Landsc. Ecol., 34, 2019, 2197; Winiarski et al., Mol. Ecol. Resour., 20, 2020, 1583) or the sensitivity of ResistanceGA results to the choice of genetic distance metric used. In the current issue of Molecular Ecology Resources, Beninde et al. (2023) aim to address these knowledge gaps by examining the impact of individual-based genetic distance measures on landscape genetic inference.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Ecology Resources
Molecular Ecology Resources 生物-进化生物学
CiteScore
15.60
自引率
5.20%
发文量
170
审稿时长
3 months
期刊介绍: Molecular Ecology Resources promotes the creation of comprehensive resources for the scientific community, encompassing computer programs, statistical and molecular advancements, and a diverse array of molecular tools. Serving as a conduit for disseminating these resources, the journal targets a broad audience of researchers in the fields of evolution, ecology, and conservation. Articles in Molecular Ecology Resources are crafted to support investigations tackling significant questions within these disciplines. In addition to original resource articles, Molecular Ecology Resources features Reviews, Opinions, and Comments relevant to the field. The journal also periodically releases Special Issues focusing on resource development within specific areas.
期刊最新文献
Chromosomal-Level Genome Suggests Adaptive Constraints Leading to the Historical Population Decline in an Extremely Endangered Plant. Development of SNP Panels from Low-Coverage Whole Genome Sequencing (lcWGS) to Support Indigenous Fisheries for Three Salmonid Species in Northern Canada. Probe Capture Enrichment Sequencing of amoA Genes Improves the Detection of Diverse Ammonia-Oxidising Archaeal and Bacterial Populations. HMicroDB: A Comprehensive Database of Herpetofaunal Microbiota With a Focus on Host Phylogeny, Physiological Traits, and Environment Factors. OGU: A Toolbox for Better Utilising Organelle Genomic Data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1