{"title":"基因表达特征的生物信息学综合分析和中药特异性组成分析揭示了非酒精性脂肪肝脂肪变性的代谢特征和靶点。","authors":"Chunping Qiao, Chengying Gu, Song Wen, Yanju He, Sheng Yang, Xinge Feng, Yipeng Zeng","doi":"10.2147/HMER.S428161","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>In this study, our primary aim is to analyze the genetic expression feature and analyze specific Traditional Chinese medicine (TCM) constitution distribution in non-alcoholic fatty liver disease (NAFLD) and reveal the metabolic characteristic of NAFLD.</p><p><strong>Materials and methods: </strong>For revealing genetic features, we obtained the gene expression data from the Gene Expression Omnibus (GEO) database of the National Center for Biotechnology Information (NCBI). The genetic data on NAFLD were analyzed by identifying differentially expressed genes (DEGs), associated pathways, co-expressed genetic networks, and gene set enrichment function. Concurrently, we assessed specific constitution distributions among local NAFLD patients through established TCM constitution models and determined the independent variable, including specific constitution to the NAFLD via the regression analyses.</p><p><strong>Results: </strong>The analyses on GEO datasets showed that simple steatosis in NAFLD is strongly associated with HOMA-insulin resistance (HOMA-IR). Analyses of GEO datasets revealed significantly altered genetic expression profiles between NAFLD and normal populations. For TCM constitution analyses, we demonstrated a decline in yin-yang harmony (YYH) and yang-asthenia (YAAC) constitution, whereas there was an increase in qi-stagnation (QSC) and phlegm-dampness (PDC) in NAFLD. The binary logistic regression analysis indicated that besides other metabolic parameters, YYH, qi asthenia (QAC), YYAC, and yin-asthenia (YAC) were the independent variables of NAFLD, while YAC was the independent variables of T2D. The multilinear regression analyses suggested that NAFLD, DM, BMI, waist, TC, TG, hypertension, ALT, AST, and YAC were the significant determinators of the FPG.</p><p><strong>Conclusion: </strong>This study presents a relatively comprehensive metabolic profile in steatosis of NAFLD, revealed by significant genetic expression feature alterations and different TCM constitution distribution in NAFLD. Through this method, the study intends to associate the genetic feature with the phenotype of TCM constitution. The results could be applied to assist integrative medicine research in exploring the appropriate personalized approaches for NAFLD.</p>","PeriodicalId":12917,"journal":{"name":"Hepatic Medicine : Evidence and Research","volume":"15 ","pages":"165-183"},"PeriodicalIF":2.6000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/e8/57/hmer-15-165.PMC10563782.pdf","citationCount":"0","resultStr":"{\"title\":\"The Integrated Bioinformatic Assay of Genetic Expression Features and Analyses of Traditional Chinese Medicine Specific Constitution Reveal Metabolic Characteristics and Targets in Steatosis of Nonalcoholic Fatty Liver Disease.\",\"authors\":\"Chunping Qiao, Chengying Gu, Song Wen, Yanju He, Sheng Yang, Xinge Feng, Yipeng Zeng\",\"doi\":\"10.2147/HMER.S428161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>In this study, our primary aim is to analyze the genetic expression feature and analyze specific Traditional Chinese medicine (TCM) constitution distribution in non-alcoholic fatty liver disease (NAFLD) and reveal the metabolic characteristic of NAFLD.</p><p><strong>Materials and methods: </strong>For revealing genetic features, we obtained the gene expression data from the Gene Expression Omnibus (GEO) database of the National Center for Biotechnology Information (NCBI). The genetic data on NAFLD were analyzed by identifying differentially expressed genes (DEGs), associated pathways, co-expressed genetic networks, and gene set enrichment function. Concurrently, we assessed specific constitution distributions among local NAFLD patients through established TCM constitution models and determined the independent variable, including specific constitution to the NAFLD via the regression analyses.</p><p><strong>Results: </strong>The analyses on GEO datasets showed that simple steatosis in NAFLD is strongly associated with HOMA-insulin resistance (HOMA-IR). Analyses of GEO datasets revealed significantly altered genetic expression profiles between NAFLD and normal populations. For TCM constitution analyses, we demonstrated a decline in yin-yang harmony (YYH) and yang-asthenia (YAAC) constitution, whereas there was an increase in qi-stagnation (QSC) and phlegm-dampness (PDC) in NAFLD. The binary logistic regression analysis indicated that besides other metabolic parameters, YYH, qi asthenia (QAC), YYAC, and yin-asthenia (YAC) were the independent variables of NAFLD, while YAC was the independent variables of T2D. The multilinear regression analyses suggested that NAFLD, DM, BMI, waist, TC, TG, hypertension, ALT, AST, and YAC were the significant determinators of the FPG.</p><p><strong>Conclusion: </strong>This study presents a relatively comprehensive metabolic profile in steatosis of NAFLD, revealed by significant genetic expression feature alterations and different TCM constitution distribution in NAFLD. Through this method, the study intends to associate the genetic feature with the phenotype of TCM constitution. The results could be applied to assist integrative medicine research in exploring the appropriate personalized approaches for NAFLD.</p>\",\"PeriodicalId\":12917,\"journal\":{\"name\":\"Hepatic Medicine : Evidence and Research\",\"volume\":\"15 \",\"pages\":\"165-183\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/e8/57/hmer-15-165.PMC10563782.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hepatic Medicine : Evidence and Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2147/HMER.S428161\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"GASTROENTEROLOGY & HEPATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hepatic Medicine : Evidence and Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2147/HMER.S428161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
The Integrated Bioinformatic Assay of Genetic Expression Features and Analyses of Traditional Chinese Medicine Specific Constitution Reveal Metabolic Characteristics and Targets in Steatosis of Nonalcoholic Fatty Liver Disease.
Purpose: In this study, our primary aim is to analyze the genetic expression feature and analyze specific Traditional Chinese medicine (TCM) constitution distribution in non-alcoholic fatty liver disease (NAFLD) and reveal the metabolic characteristic of NAFLD.
Materials and methods: For revealing genetic features, we obtained the gene expression data from the Gene Expression Omnibus (GEO) database of the National Center for Biotechnology Information (NCBI). The genetic data on NAFLD were analyzed by identifying differentially expressed genes (DEGs), associated pathways, co-expressed genetic networks, and gene set enrichment function. Concurrently, we assessed specific constitution distributions among local NAFLD patients through established TCM constitution models and determined the independent variable, including specific constitution to the NAFLD via the regression analyses.
Results: The analyses on GEO datasets showed that simple steatosis in NAFLD is strongly associated with HOMA-insulin resistance (HOMA-IR). Analyses of GEO datasets revealed significantly altered genetic expression profiles between NAFLD and normal populations. For TCM constitution analyses, we demonstrated a decline in yin-yang harmony (YYH) and yang-asthenia (YAAC) constitution, whereas there was an increase in qi-stagnation (QSC) and phlegm-dampness (PDC) in NAFLD. The binary logistic regression analysis indicated that besides other metabolic parameters, YYH, qi asthenia (QAC), YYAC, and yin-asthenia (YAC) were the independent variables of NAFLD, while YAC was the independent variables of T2D. The multilinear regression analyses suggested that NAFLD, DM, BMI, waist, TC, TG, hypertension, ALT, AST, and YAC were the significant determinators of the FPG.
Conclusion: This study presents a relatively comprehensive metabolic profile in steatosis of NAFLD, revealed by significant genetic expression feature alterations and different TCM constitution distribution in NAFLD. Through this method, the study intends to associate the genetic feature with the phenotype of TCM constitution. The results could be applied to assist integrative medicine research in exploring the appropriate personalized approaches for NAFLD.
期刊介绍:
Hepatic Medicine: Evidence and Research is an international, peer-reviewed, open access, online journal. Publishing original research, reports, editorials, reviews and commentaries on all aspects of adult and pediatric hepatology in the clinic and laboratory including the following topics: Pathology, pathophysiology of hepatic disease Investigation and treatment of hepatic disease Pharmacology of drugs used for the treatment of hepatic disease Although the main focus of the journal is to publish research and clinical results in humans; preclinical, animal and in vitro studies will be published where they will shed light on disease processes and potential new therapies. Issues of patient safety and quality of care will also be considered. As of 1st April 2019, Hepatic Medicine: Evidence and Research will no longer consider meta-analyses for publication.