医学成像中人工智能的伦理考虑:数据收集、开发和评估。

IF 9.1 1区 医学 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Journal of Nuclear Medicine Pub Date : 2023-12-01 DOI:10.2967/jnumed.123.266080
Jonathan Herington, Melissa D McCradden, Kathleen Creel, Ronald Boellaard, Elizabeth C Jones, Abhinav K Jha, Arman Rahmim, Peter J H Scott, John J Sunderland, Richard L Wahl, Sven Zuehlsdorff, Babak Saboury
{"title":"医学成像中人工智能的伦理考虑:数据收集、开发和评估。","authors":"Jonathan Herington, Melissa D McCradden, Kathleen Creel, Ronald Boellaard, Elizabeth C Jones, Abhinav K Jha, Arman Rahmim, Peter J H Scott, John J Sunderland, Richard L Wahl, Sven Zuehlsdorff, Babak Saboury","doi":"10.2967/jnumed.123.266080","DOIUrl":null,"url":null,"abstract":"<p><p>The development of artificial intelligence (AI) within nuclear imaging involves several ethically fraught components at different stages of the machine learning pipeline, including during data collection, model training and validation, and clinical use. Drawing on the traditional principles of medical and research ethics, and highlighting the need to ensure health justice, the AI task force of the Society of Nuclear Medicine and Molecular Imaging has identified 4 major ethical risks: privacy of data subjects, data quality and model efficacy, fairness toward marginalized populations, and transparency of clinical performance. We provide preliminary recommendations to developers of AI-driven medical devices for mitigating the impact of these risks on patients and populations.</p>","PeriodicalId":16758,"journal":{"name":"Journal of Nuclear Medicine","volume":" ","pages":"1848-1854"},"PeriodicalIF":9.1000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10690124/pdf/","citationCount":"0","resultStr":"{\"title\":\"Ethical Considerations for Artificial Intelligence in Medical Imaging: Data Collection, Development, and Evaluation.\",\"authors\":\"Jonathan Herington, Melissa D McCradden, Kathleen Creel, Ronald Boellaard, Elizabeth C Jones, Abhinav K Jha, Arman Rahmim, Peter J H Scott, John J Sunderland, Richard L Wahl, Sven Zuehlsdorff, Babak Saboury\",\"doi\":\"10.2967/jnumed.123.266080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The development of artificial intelligence (AI) within nuclear imaging involves several ethically fraught components at different stages of the machine learning pipeline, including during data collection, model training and validation, and clinical use. Drawing on the traditional principles of medical and research ethics, and highlighting the need to ensure health justice, the AI task force of the Society of Nuclear Medicine and Molecular Imaging has identified 4 major ethical risks: privacy of data subjects, data quality and model efficacy, fairness toward marginalized populations, and transparency of clinical performance. We provide preliminary recommendations to developers of AI-driven medical devices for mitigating the impact of these risks on patients and populations.</p>\",\"PeriodicalId\":16758,\"journal\":{\"name\":\"Journal of Nuclear Medicine\",\"volume\":\" \",\"pages\":\"1848-1854\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10690124/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nuclear Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2967/jnumed.123.266080\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nuclear Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2967/jnumed.123.266080","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

核成像中人工智能的发展涉及机器学习管道不同阶段的几个伦理问题,包括数据收集、模型训练和验证以及临床使用。核医学和分子成像学会的人工智能工作组借鉴了医学和研究伦理的传统原则,并强调了确保健康公正的必要性,确定了4个主要的伦理风险:数据主体的隐私、数据质量和模型功效、对边缘化人群的公平性以及临床表现的透明度。我们向人工智能驱动医疗设备的开发人员提供初步建议,以减轻这些风险对患者和人群的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ethical Considerations for Artificial Intelligence in Medical Imaging: Data Collection, Development, and Evaluation.

The development of artificial intelligence (AI) within nuclear imaging involves several ethically fraught components at different stages of the machine learning pipeline, including during data collection, model training and validation, and clinical use. Drawing on the traditional principles of medical and research ethics, and highlighting the need to ensure health justice, the AI task force of the Society of Nuclear Medicine and Molecular Imaging has identified 4 major ethical risks: privacy of data subjects, data quality and model efficacy, fairness toward marginalized populations, and transparency of clinical performance. We provide preliminary recommendations to developers of AI-driven medical devices for mitigating the impact of these risks on patients and populations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Nuclear Medicine
Journal of Nuclear Medicine 医学-核医学
CiteScore
13.00
自引率
8.60%
发文量
340
审稿时长
1 months
期刊介绍: The Journal of Nuclear Medicine (JNM), self-published by the Society of Nuclear Medicine and Molecular Imaging (SNMMI), provides readers worldwide with clinical and basic science investigations, continuing education articles, reviews, employment opportunities, and updates on practice and research. In the 2022 Journal Citation Reports (released in June 2023), JNM ranked sixth in impact among 203 medical journals worldwide in the radiology, nuclear medicine, and medical imaging category.
期刊最新文献
C-X-C Motif Chemokine Receptor 4-Directed Scintigraphy of Multiple Myeloma Using [99mTc]Tc-PentixaTec. Debating the Future of Nuclear Medicine: The Greek Experience. Peptide Receptor Radionuclide Therapy Is Effective for Clinical Control of Symptomatic Metastatic Insulinoma: A Long-Term Retrospective Analysis Identification of (R)-[18F]YH134 for Monoacylglycerol Lipase Neuroimaging and Exploration of Its Use for Central Nervous System and Peripheral Drug Development Value of68Ga-FAPI-04 and18F-FDG PET/CT in Early Prediction of Pathologic Response to Neoadjuvant Chemotherapy in Locally Advanced Gastric Cancer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1