{"title":"溶剂辅助固相自由基接枝制备功能性聚丙烯的高效方法","authors":"Dengfei Wang, Jian Wang, Shuyan He, Yibin Yan, Jianwei Zhang, Jie Dong","doi":"10.1007/s13203-020-00261-9","DOIUrl":null,"url":null,"abstract":"<p>Herein an efficient approach to produce functional polypropylene via solvent assisted solid-phase grafting process is reported, in which acrylic acid, methyl methacrylate and maleic anhydride are used as multi-monomers, 2,2′-azobis(2-methylpropionitrile) as initiator and ether as swelling solvent and carrier. The effects of various factors such as the swelling solvent species and dosage, swelling time and temperature, monomer and initiator concentrations, reaction time and temperature, nitrogen flow rate and the stirring speed on the grafting percentage and grafting efficiency were investigated. To verify the polar species was grafted onto polypropylene, the resulted polymers were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray diffraction analysis, water contact angle measurement, tensile strength and melt flow rate measurement. All the results showed that using the ether assisted solid-phase free radical grafting process is an efficient and versatile approach to produce functional polypropylene.</p>","PeriodicalId":472,"journal":{"name":"Applied Petrochemical Research","volume":"11 1","pages":"99 - 111"},"PeriodicalIF":0.1250,"publicationDate":"2021-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s13203-020-00261-9","citationCount":"4","resultStr":"{\"title\":\"Efficient approach to produce functional polypropylene via solvent assisted solid-phase free radical grafting of multi-monomers\",\"authors\":\"Dengfei Wang, Jian Wang, Shuyan He, Yibin Yan, Jianwei Zhang, Jie Dong\",\"doi\":\"10.1007/s13203-020-00261-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Herein an efficient approach to produce functional polypropylene via solvent assisted solid-phase grafting process is reported, in which acrylic acid, methyl methacrylate and maleic anhydride are used as multi-monomers, 2,2′-azobis(2-methylpropionitrile) as initiator and ether as swelling solvent and carrier. The effects of various factors such as the swelling solvent species and dosage, swelling time and temperature, monomer and initiator concentrations, reaction time and temperature, nitrogen flow rate and the stirring speed on the grafting percentage and grafting efficiency were investigated. To verify the polar species was grafted onto polypropylene, the resulted polymers were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray diffraction analysis, water contact angle measurement, tensile strength and melt flow rate measurement. All the results showed that using the ether assisted solid-phase free radical grafting process is an efficient and versatile approach to produce functional polypropylene.</p>\",\"PeriodicalId\":472,\"journal\":{\"name\":\"Applied Petrochemical Research\",\"volume\":\"11 1\",\"pages\":\"99 - 111\"},\"PeriodicalIF\":0.1250,\"publicationDate\":\"2021-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s13203-020-00261-9\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Petrochemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13203-020-00261-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Petrochemical Research","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13203-020-00261-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Efficient approach to produce functional polypropylene via solvent assisted solid-phase free radical grafting of multi-monomers
Herein an efficient approach to produce functional polypropylene via solvent assisted solid-phase grafting process is reported, in which acrylic acid, methyl methacrylate and maleic anhydride are used as multi-monomers, 2,2′-azobis(2-methylpropionitrile) as initiator and ether as swelling solvent and carrier. The effects of various factors such as the swelling solvent species and dosage, swelling time and temperature, monomer and initiator concentrations, reaction time and temperature, nitrogen flow rate and the stirring speed on the grafting percentage and grafting efficiency were investigated. To verify the polar species was grafted onto polypropylene, the resulted polymers were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray diffraction analysis, water contact angle measurement, tensile strength and melt flow rate measurement. All the results showed that using the ether assisted solid-phase free radical grafting process is an efficient and versatile approach to produce functional polypropylene.
期刊介绍:
Applied Petrochemical Research is a quarterly Open Access journal supported by King Abdulaziz City for Science and Technology and all the manuscripts are single-blind peer-reviewed for scientific quality and acceptance. The article-processing charge (APC) for all authors is covered by KACST. Publication of original applied research on all aspects of the petrochemical industry focusing on new and smart technologies that allow the production of value-added end products in a cost-effective way. Topics of interest include: • Review of Petrochemical Processes • Reaction Engineering • Design • Catalysis • Pilot Plant and Production Studies • Synthesis As Applied to any of the following aspects of Petrochemical Research: -Feedstock Petrochemicals: Ethylene Production, Propylene Production, Butylene Production, Aromatics Production (Benzene, Toluene, Xylene etc...), Oxygenate Production (Methanol, Ethanol, Propanol etc…), Paraffins and Waxes. -Petrochemical Refining Processes: Cracking (Steam Cracking, Hydrocracking, Fluid Catalytic Cracking), Reforming and Aromatisation, Isomerisation Processes, Dimerization and Polymerization, Aromatic Alkylation, Oxidation Processes, Hydrogenation and Dehydrogenation. -Products: Polymers and Plastics, Lubricants, Speciality and Fine Chemicals (Adhesives, Fragrances, Flavours etc...), Fibres, Pharmaceuticals.