Adriana M Martha-Paz, David Eide, David Mendoza-Cózatl, Norma A Castro-Guerrero, Elva T Aréchiga-Carvajal
{"title":"担子菌门对锌的吸收:玉米黑鱼体内锌转运蛋白的特性。","authors":"Adriana M Martha-Paz, David Eide, David Mendoza-Cózatl, Norma A Castro-Guerrero, Elva T Aréchiga-Carvajal","doi":"10.1080/09687688.2019.1667034","DOIUrl":null,"url":null,"abstract":"Abstract At present, the planet faces a change in the composition and bioavailability of nutrients. Zinc deficiency is a widespread problem throughout the world. It is imperative to understand the mechanisms that organisms use to adapt to the deficiency of this micronutrient. In the Ascomycetes fungi, the ZIP family of proteins is one of the most important for zinc transport and includes high affinity Zrt1p and low zinc affinity Zrt2p transporters. After identification and characterization of ZRT1/ZRT2-like genes in Ustilago maydis we conclude that they encode for high and low zinc affinity transporters, with no apparent iron transport activity. These conclusions were supported by the gene deletion in Ustilago and the functional characterization of ZRT1/ZRT2-like genes by measuring the intracellular zinc content over a range of zinc availability. The functional complementation of the S. cerevisiae ZRT1Δ ZRT2Δ mutant with U. maydis genes supports this as well. U. maydis ZRT2 gene, was found to be regulated by pH through Rim101 pathway, thus providing novel insights into how this Basidiomycota fungus can adapt to different levels of Zn availability.","PeriodicalId":18858,"journal":{"name":"Molecular Membrane Biology","volume":"35 1","pages":"39-50"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/09687688.2019.1667034","citationCount":"11","resultStr":"{\"title\":\"Zinc uptake in the Basidiomycota: Characterization of zinc transporters in <i>Ustilago maydis</i>.\",\"authors\":\"Adriana M Martha-Paz, David Eide, David Mendoza-Cózatl, Norma A Castro-Guerrero, Elva T Aréchiga-Carvajal\",\"doi\":\"10.1080/09687688.2019.1667034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract At present, the planet faces a change in the composition and bioavailability of nutrients. Zinc deficiency is a widespread problem throughout the world. It is imperative to understand the mechanisms that organisms use to adapt to the deficiency of this micronutrient. In the Ascomycetes fungi, the ZIP family of proteins is one of the most important for zinc transport and includes high affinity Zrt1p and low zinc affinity Zrt2p transporters. After identification and characterization of ZRT1/ZRT2-like genes in Ustilago maydis we conclude that they encode for high and low zinc affinity transporters, with no apparent iron transport activity. These conclusions were supported by the gene deletion in Ustilago and the functional characterization of ZRT1/ZRT2-like genes by measuring the intracellular zinc content over a range of zinc availability. The functional complementation of the S. cerevisiae ZRT1Δ ZRT2Δ mutant with U. maydis genes supports this as well. U. maydis ZRT2 gene, was found to be regulated by pH through Rim101 pathway, thus providing novel insights into how this Basidiomycota fungus can adapt to different levels of Zn availability.\",\"PeriodicalId\":18858,\"journal\":{\"name\":\"Molecular Membrane Biology\",\"volume\":\"35 1\",\"pages\":\"39-50\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/09687688.2019.1667034\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Membrane Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/09687688.2019.1667034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Membrane Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09687688.2019.1667034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Zinc uptake in the Basidiomycota: Characterization of zinc transporters in Ustilago maydis.
Abstract At present, the planet faces a change in the composition and bioavailability of nutrients. Zinc deficiency is a widespread problem throughout the world. It is imperative to understand the mechanisms that organisms use to adapt to the deficiency of this micronutrient. In the Ascomycetes fungi, the ZIP family of proteins is one of the most important for zinc transport and includes high affinity Zrt1p and low zinc affinity Zrt2p transporters. After identification and characterization of ZRT1/ZRT2-like genes in Ustilago maydis we conclude that they encode for high and low zinc affinity transporters, with no apparent iron transport activity. These conclusions were supported by the gene deletion in Ustilago and the functional characterization of ZRT1/ZRT2-like genes by measuring the intracellular zinc content over a range of zinc availability. The functional complementation of the S. cerevisiae ZRT1Δ ZRT2Δ mutant with U. maydis genes supports this as well. U. maydis ZRT2 gene, was found to be regulated by pH through Rim101 pathway, thus providing novel insights into how this Basidiomycota fungus can adapt to different levels of Zn availability.
期刊介绍:
Cessation.
Molecular Membrane Biology provides a forum for high quality research that serves to advance knowledge in molecular aspects of biological membrane structure and function. The journal welcomes submissions of original research papers and reviews in the following areas:
• Membrane receptors and signalling
• Membrane transporters, pores and channels
• Synthesis and structure of membrane proteins
• Membrane translocation and targeting
• Lipid organisation and asymmetry
• Model membranes
• Membrane trafficking
• Cytoskeletal and extracellular membrane interactions
• Cell adhesion and intercellular interactions
• Molecular dynamics and molecular modelling of membranes.
• Antimicrobial peptides.