基于无锚物体检测和气孔导度计算的旋转气孔测量。

IF 7.6 1区 农林科学 Q1 AGRONOMY Plant Phenomics Pub Date : 2023-10-09 eCollection Date: 2023-01-01 DOI:10.34133/plantphenomics.0106
Fan Zhang, Bo Wang, Fuhao Lu, Xinhong Zhang
{"title":"基于无锚物体检测和气孔导度计算的旋转气孔测量。","authors":"Fan Zhang,&nbsp;Bo Wang,&nbsp;Fuhao Lu,&nbsp;Xinhong Zhang","doi":"10.34133/plantphenomics.0106","DOIUrl":null,"url":null,"abstract":"<p><p>Stomata play an essential role in regulating water and carbon dioxide levels in plant leaves, which is important for photosynthesis. Previous deep learning-based plant stomata detection methods are based on horizontal detection. The detection anchor boxes of deep learning model are horizontal, while the angle of stomata is randomized, so it is not possible to calculate stomata traits directly from the detection anchor boxes. Additional processing of image (e.g., rotating image) is required before detecting stomata and calculating stomata traits. This paper proposes a novel approach, named DeepRSD (deep learning-based rotating stomata detection), for detecting rotating stomata and calculating stomata basic traits at the same time. Simultaneously, the stomata conductance loss function is introduced in the DeepRSD model training, which improves the efficiency of stomata detection and conductance calculation. The experimental results demonstrate that the DeepRSD model reaches 94.3% recognition accuracy for stomata of maize leaf. The proposed method can help researchers conduct large-scale studies on stomata morphology, structure, and stomata conductance models.</p>","PeriodicalId":20318,"journal":{"name":"Plant Phenomics","volume":"5 ","pages":"0106"},"PeriodicalIF":7.6000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10561978/pdf/","citationCount":"0","resultStr":"{\"title\":\"Rotating Stomata Measurement Based on Anchor-Free Object Detection and Stomata Conductance Calculation.\",\"authors\":\"Fan Zhang,&nbsp;Bo Wang,&nbsp;Fuhao Lu,&nbsp;Xinhong Zhang\",\"doi\":\"10.34133/plantphenomics.0106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Stomata play an essential role in regulating water and carbon dioxide levels in plant leaves, which is important for photosynthesis. Previous deep learning-based plant stomata detection methods are based on horizontal detection. The detection anchor boxes of deep learning model are horizontal, while the angle of stomata is randomized, so it is not possible to calculate stomata traits directly from the detection anchor boxes. Additional processing of image (e.g., rotating image) is required before detecting stomata and calculating stomata traits. This paper proposes a novel approach, named DeepRSD (deep learning-based rotating stomata detection), for detecting rotating stomata and calculating stomata basic traits at the same time. Simultaneously, the stomata conductance loss function is introduced in the DeepRSD model training, which improves the efficiency of stomata detection and conductance calculation. The experimental results demonstrate that the DeepRSD model reaches 94.3% recognition accuracy for stomata of maize leaf. The proposed method can help researchers conduct large-scale studies on stomata morphology, structure, and stomata conductance models.</p>\",\"PeriodicalId\":20318,\"journal\":{\"name\":\"Plant Phenomics\",\"volume\":\"5 \",\"pages\":\"0106\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2023-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10561978/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Phenomics\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.34133/plantphenomics.0106\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Phenomics","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.34133/plantphenomics.0106","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

摘要

气孔在调节植物叶片中的水分和二氧化碳水平方面发挥着重要作用,这对光合作用很重要。以前基于深度学习的植物气孔检测方法都是基于水平检测的。深度学习模型的检测锚盒是水平的,而气孔的角度是随机的,因此不可能直接从检测锚盒中计算气孔特征。在检测气孔和计算气孔特征之前,需要对图像进行额外的处理(例如,旋转图像)。本文提出了一种新的方法,称为DeepRSD(基于深度学习的旋转气孔检测),用于检测旋转气孔,同时计算气孔的基本特征。同时,在DeepRSD模型训练中引入了气孔电导损失函数,提高了气孔检测和电导计算的效率。实验结果表明,DeepRSD模型对玉米叶片气孔的识别准确率达到94.3%。所提出的方法可以帮助研究人员对气孔形态、结构和气孔电导模型进行大规模研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Rotating Stomata Measurement Based on Anchor-Free Object Detection and Stomata Conductance Calculation.

Stomata play an essential role in regulating water and carbon dioxide levels in plant leaves, which is important for photosynthesis. Previous deep learning-based plant stomata detection methods are based on horizontal detection. The detection anchor boxes of deep learning model are horizontal, while the angle of stomata is randomized, so it is not possible to calculate stomata traits directly from the detection anchor boxes. Additional processing of image (e.g., rotating image) is required before detecting stomata and calculating stomata traits. This paper proposes a novel approach, named DeepRSD (deep learning-based rotating stomata detection), for detecting rotating stomata and calculating stomata basic traits at the same time. Simultaneously, the stomata conductance loss function is introduced in the DeepRSD model training, which improves the efficiency of stomata detection and conductance calculation. The experimental results demonstrate that the DeepRSD model reaches 94.3% recognition accuracy for stomata of maize leaf. The proposed method can help researchers conduct large-scale studies on stomata morphology, structure, and stomata conductance models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant Phenomics
Plant Phenomics Multiple-
CiteScore
8.60
自引率
9.20%
发文量
26
审稿时长
14 weeks
期刊介绍: Plant Phenomics is an Open Access journal published in affiliation with the State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University (NAU) and published by the American Association for the Advancement of Science (AAAS). Like all partners participating in the Science Partner Journal program, Plant Phenomics is editorially independent from the Science family of journals. The mission of Plant Phenomics is to publish novel research that will advance all aspects of plant phenotyping from the cell to the plant population levels using innovative combinations of sensor systems and data analytics. Plant Phenomics aims also to connect phenomics to other science domains, such as genomics, genetics, physiology, molecular biology, bioinformatics, statistics, mathematics, and computer sciences. Plant Phenomics should thus contribute to advance plant sciences and agriculture/forestry/horticulture by addressing key scientific challenges in the area of plant phenomics. The scope of the journal covers the latest technologies in plant phenotyping for data acquisition, data management, data interpretation, modeling, and their practical applications for crop cultivation, plant breeding, forestry, horticulture, ecology, and other plant-related domains.
期刊最新文献
From Images to Loci: Applying 3D Deep Learning to Enable Multivariate and Multitemporal Digital Phenotyping and Mapping the Genetics Underlying Nitrogen Use Efficiency in Wheat. Informed-Learning-Guided Visual Question Answering Model of Crop Disease. Coupling PROSPECT with Prior Estimation of Leaf Structure to Improve the Retrieval of Leaf Nitrogen Content in Ginkgo from Bidirectional Reflectance Factor Spectra. A Field-to-Parameter Pipeline for Analyzing and Simulating Root System Architecture of Woody Perennials: Application to Grapevine Rootstocks. Estimating Leaf Nitrogen Accumulation Considering Vertical Heterogeneity Using Multiangular Unmanned Aerial Vehicle Remote Sensing in Wheat.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1