针对神经系统疾病中少突胶质细胞分化和髓鞘再生的AKT/mTOR/p70S6K途径。

Chen Ge, Changwei Li
{"title":"针对神经系统疾病中少突胶质细胞分化和髓鞘再生的AKT/mTOR/p70S6K途径。","authors":"Chen Ge, Changwei Li","doi":"10.2174/0115672026274954230919070115","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The AKT/mTOR/p70S6K pathway has been shown to potentially promote spinal cord injury (SCI) repair in rats. However, its exact mechanism and beyond needs to be further explored.</p><p><strong>Objective: </strong>This study aims to explore the AKT/mTOR/p70S6K pathway in oligodendrocyte precursor cell (OPC) differentiation, microglial polarization differentiation, and the role of these in myelin regeneration in vitro.</p><p><strong>Methods: </strong>The isolation, induction and characterization of rat primary neuronal stem cells, OPCs and oligodendrocytes were investigated with immunofluorescence and RT-qPCR. Then, the role of AKT/mTOR/p70S6K signaling was explored using western blotting and immunofluorescence, the effect on myelination was examined with OPC-dorsal root ganglion (DRG) neurons co-culture, and the influence of M1/M2 polarization status of microglia on myelin formation was also observed by adding M1/M2 supernatants into OPC-DRG neurons co-culture.</p><p><strong>Results: </strong>Activation of the AKT/mTOR/p70S6K pathway elevated the expression of oligodendrocyte differentiation markers, including MBP, PLP and MOG, which also promoted the colocalization of MBP and NFH in OPC-DRG neurons co-culture. More interestingly, stimulation of the AKT/mTOR/p70S6K pathway facilitated M2 polarization of rat microglia. M2 polarization of microglia enhanced OPC differentiation to oligodendrocytes and myelin formation.</p><p><strong>Conclusion: </strong>Our findings highlight the potential of targeting the AKT/mTOR/p70S6K pathway in promoting oligodendrocyte differentiation and myelin regeneration in neurological disorders such as SCI.</p>","PeriodicalId":93965,"journal":{"name":"Current neurovascular research","volume":" ","pages":"453-463"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Targeting the AKT/mTOR/p70S6K Pathway for Oligodendrocyte Differentiation and Myelin Regeneration in Neurological Disorders.\",\"authors\":\"Chen Ge, Changwei Li\",\"doi\":\"10.2174/0115672026274954230919070115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The AKT/mTOR/p70S6K pathway has been shown to potentially promote spinal cord injury (SCI) repair in rats. However, its exact mechanism and beyond needs to be further explored.</p><p><strong>Objective: </strong>This study aims to explore the AKT/mTOR/p70S6K pathway in oligodendrocyte precursor cell (OPC) differentiation, microglial polarization differentiation, and the role of these in myelin regeneration in vitro.</p><p><strong>Methods: </strong>The isolation, induction and characterization of rat primary neuronal stem cells, OPCs and oligodendrocytes were investigated with immunofluorescence and RT-qPCR. Then, the role of AKT/mTOR/p70S6K signaling was explored using western blotting and immunofluorescence, the effect on myelination was examined with OPC-dorsal root ganglion (DRG) neurons co-culture, and the influence of M1/M2 polarization status of microglia on myelin formation was also observed by adding M1/M2 supernatants into OPC-DRG neurons co-culture.</p><p><strong>Results: </strong>Activation of the AKT/mTOR/p70S6K pathway elevated the expression of oligodendrocyte differentiation markers, including MBP, PLP and MOG, which also promoted the colocalization of MBP and NFH in OPC-DRG neurons co-culture. More interestingly, stimulation of the AKT/mTOR/p70S6K pathway facilitated M2 polarization of rat microglia. M2 polarization of microglia enhanced OPC differentiation to oligodendrocytes and myelin formation.</p><p><strong>Conclusion: </strong>Our findings highlight the potential of targeting the AKT/mTOR/p70S6K pathway in promoting oligodendrocyte differentiation and myelin regeneration in neurological disorders such as SCI.</p>\",\"PeriodicalId\":93965,\"journal\":{\"name\":\"Current neurovascular research\",\"volume\":\" \",\"pages\":\"453-463\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current neurovascular research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/0115672026274954230919070115\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current neurovascular research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0115672026274954230919070115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景:AKT/mTOR/p70S6K通路已被证明有可能促进大鼠脊髓损伤(SCI)的修复。然而,它的确切机制及其超越还有待进一步探索。目的:探讨AKT/mTOR/p70S6K通路在少突胶质细胞前体细胞(OPC)分化、小胶质细胞极化分化中的作用及其在体外髓鞘再生中的作用。方法:采用免疫荧光和RT-qPCR方法对大鼠原代神经干细胞、OPCs和少突胶质细胞的分离、诱导和特性进行研究。然后,用蛋白质印迹和免疫荧光法探讨了AKT/mTOR/p70S6K信号传导的作用,并用共培养的OPC背根神经节(DRG)神经元检测了其对髓鞘形成的影响,结果:AKT/mTOR/p70S6K通路的激活使少突胶质细胞分化标志物MBP、PLP和MOG的表达升高,并促进了MBP和NFH在OPC-DRG神经元共培养中的共定位。更有趣的是,刺激AKT/mTOR/p70S6K通路促进了大鼠小胶质细胞的M2极化。小胶质细胞的M2极化增强了OPC向少突胶质细胞的分化和髓鞘的形成。结论:我们的研究结果突出了靶向AKT/mTOR/p70S6K通路在促进SCI等神经系统疾病中少突胶质细胞分化和髓鞘再生方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Targeting the AKT/mTOR/p70S6K Pathway for Oligodendrocyte Differentiation and Myelin Regeneration in Neurological Disorders.

Background: The AKT/mTOR/p70S6K pathway has been shown to potentially promote spinal cord injury (SCI) repair in rats. However, its exact mechanism and beyond needs to be further explored.

Objective: This study aims to explore the AKT/mTOR/p70S6K pathway in oligodendrocyte precursor cell (OPC) differentiation, microglial polarization differentiation, and the role of these in myelin regeneration in vitro.

Methods: The isolation, induction and characterization of rat primary neuronal stem cells, OPCs and oligodendrocytes were investigated with immunofluorescence and RT-qPCR. Then, the role of AKT/mTOR/p70S6K signaling was explored using western blotting and immunofluorescence, the effect on myelination was examined with OPC-dorsal root ganglion (DRG) neurons co-culture, and the influence of M1/M2 polarization status of microglia on myelin formation was also observed by adding M1/M2 supernatants into OPC-DRG neurons co-culture.

Results: Activation of the AKT/mTOR/p70S6K pathway elevated the expression of oligodendrocyte differentiation markers, including MBP, PLP and MOG, which also promoted the colocalization of MBP and NFH in OPC-DRG neurons co-culture. More interestingly, stimulation of the AKT/mTOR/p70S6K pathway facilitated M2 polarization of rat microglia. M2 polarization of microglia enhanced OPC differentiation to oligodendrocytes and myelin formation.

Conclusion: Our findings highlight the potential of targeting the AKT/mTOR/p70S6K pathway in promoting oligodendrocyte differentiation and myelin regeneration in neurological disorders such as SCI.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Basic Fibroblast Growth Factor-Releasing Polyglycolic Acid Duras Improve Neurological Function after Cerebral Infarction. Prognostic Value of Serum Bilirubin in Aneurysmal Subarachnoid Hemorrhage Patients. CT Perfusion Metrics as Indicators of Intracranial Atherosclerotic Stenosis in Acute Ischemic Stroke: A Clinical Analysis. Etiologies and Risk Factors by Sex and Age in Young Adult Patients with Ischemic Stroke. Malignant Brain Edema and Associated Factors in Large Hemispheric Infarction Following Reperfusion Therapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1