用于模拟的丙酮-水溶液的临界温度、临界压力和密度的测量

IF 1.4 4区 化学 Q4 CHEMISTRY, PHYSICAL Journal of Solution Chemistry Pub Date : 2023-09-01 DOI:10.1007/s10953-023-01320-0
Zhirong Chen, Yang Yao, Shenfeng Yuan, Hong Yin
{"title":"用于模拟的丙酮-水溶液的临界温度、临界压力和密度的测量","authors":"Zhirong Chen,&nbsp;Yang Yao,&nbsp;Shenfeng Yuan,&nbsp;Hong Yin","doi":"10.1007/s10953-023-01320-0","DOIUrl":null,"url":null,"abstract":"<div><p>Critical temperature, critical pressure and <i>P–T–ρ–X</i> data of acetone–water solutions with water mole fractions in a range of 0–60% were measured to provide fundamental data for CFD simulations. Critical temperatures were determined via observing critical opalescence in fused quartz capillary tubes. Meanwhile, critical pressures were measured by heating acetone–water solutions to its critical temperature in an autoclave. The standard deviations of critical temperature and critical pressure were 0.55 K and 0.029 MPa, respectively. The results indicate that only one phase exists during mixing of acetone with water. Moreover, <i>P–T–ρ–X</i> data under 15 and 20 MPa in the temperature range of 460–550 K were measured in the autoclave. The relative deviation of density was 0.32%. Volume-translated Peng-Robinson and Soave–Redlich–Kwong state equations were used to illustrate the <i>P–V–T–X</i> relationship of acetone–water solutions, and the Peng–Robinson state equation with an average absolute relative deviation of 1.19% between fitting and experimental densities was found more accurate.</p></div>","PeriodicalId":666,"journal":{"name":"Journal of Solution Chemistry","volume":"52 12","pages":"1331 - 1351"},"PeriodicalIF":1.4000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10953-023-01320-0.pdf","citationCount":"0","resultStr":"{\"title\":\"Measurement of Critical Temperatures, Critical Pressures and Densities of Acetone–Water Solutions for Simulation\",\"authors\":\"Zhirong Chen,&nbsp;Yang Yao,&nbsp;Shenfeng Yuan,&nbsp;Hong Yin\",\"doi\":\"10.1007/s10953-023-01320-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Critical temperature, critical pressure and <i>P–T–ρ–X</i> data of acetone–water solutions with water mole fractions in a range of 0–60% were measured to provide fundamental data for CFD simulations. Critical temperatures were determined via observing critical opalescence in fused quartz capillary tubes. Meanwhile, critical pressures were measured by heating acetone–water solutions to its critical temperature in an autoclave. The standard deviations of critical temperature and critical pressure were 0.55 K and 0.029 MPa, respectively. The results indicate that only one phase exists during mixing of acetone with water. Moreover, <i>P–T–ρ–X</i> data under 15 and 20 MPa in the temperature range of 460–550 K were measured in the autoclave. The relative deviation of density was 0.32%. Volume-translated Peng-Robinson and Soave–Redlich–Kwong state equations were used to illustrate the <i>P–V–T–X</i> relationship of acetone–water solutions, and the Peng–Robinson state equation with an average absolute relative deviation of 1.19% between fitting and experimental densities was found more accurate.</p></div>\",\"PeriodicalId\":666,\"journal\":{\"name\":\"Journal of Solution Chemistry\",\"volume\":\"52 12\",\"pages\":\"1331 - 1351\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10953-023-01320-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Solution Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10953-023-01320-0\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solution Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10953-023-01320-0","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

测量了水摩尔分数在0–60%范围内的丙酮-水溶液的临界温度、临界压力和P–T–ρ–X数据,为CFD模拟提供了基础数据。通过观察熔融石英毛细管中的临界乳白色来确定临界温度。同时,通过在高压釜中将丙酮-水溶液加热到其临界温度来测量临界压力。临界温度和临界压力的标准偏差分别为0.55K和0.029MPa。结果表明,在丙酮与水的混合过程中,只有一个相存在。此外,在高压釜中测量了460–550 K温度范围内15和20 MPa下的P–T–ρ–X数据。密度的相对偏差为0.32%。使用体积转换的Peng-Robinson和Soave–Redlich–Kwong状态方程来说明丙酮-水溶液的P–V–T–X关系,发现拟合密度和实验密度之间的平均绝对相对偏差为1.19%的Peng–Robinson状态方程更准确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Measurement of Critical Temperatures, Critical Pressures and Densities of Acetone–Water Solutions for Simulation

Critical temperature, critical pressure and P–T–ρ–X data of acetone–water solutions with water mole fractions in a range of 0–60% were measured to provide fundamental data for CFD simulations. Critical temperatures were determined via observing critical opalescence in fused quartz capillary tubes. Meanwhile, critical pressures were measured by heating acetone–water solutions to its critical temperature in an autoclave. The standard deviations of critical temperature and critical pressure were 0.55 K and 0.029 MPa, respectively. The results indicate that only one phase exists during mixing of acetone with water. Moreover, P–T–ρ–X data under 15 and 20 MPa in the temperature range of 460–550 K were measured in the autoclave. The relative deviation of density was 0.32%. Volume-translated Peng-Robinson and Soave–Redlich–Kwong state equations were used to illustrate the P–V–T–X relationship of acetone–water solutions, and the Peng–Robinson state equation with an average absolute relative deviation of 1.19% between fitting and experimental densities was found more accurate.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Solution Chemistry
Journal of Solution Chemistry 化学-物理化学
CiteScore
2.30
自引率
0.00%
发文量
87
审稿时长
3-8 weeks
期刊介绍: Journal of Solution Chemistry offers a forum for research on the physical chemistry of liquid solutions in such fields as physical chemistry, chemical physics, molecular biology, statistical mechanics, biochemistry, and biophysics. The emphasis is on papers in which the solvent plays a dominant rather than incidental role. Featured topics include experimental investigations of the dielectric, spectroscopic, thermodynamic, transport, or relaxation properties of both electrolytes and nonelectrolytes in liquid solutions.
期刊最新文献
PC-SAFT Model on Molecular Interactions in Acetophenone with Chloroalkanes and Chloroalkenes Solutions at Different Temperatures: Volumetric, Acoustic, and Electromagnetic Approach Calculation of Solute Partition Coefficient Using the A-P Scheme Molecular Interactions in Binary Mixtures of n-Alkylmethylimidazolium bis(trifluoromethylsulfonyl)imide + Acetonitrile: Thermophysical and Density Functional Theory Studies An Excess Chemical Potential for Hard-Sphere Diatomic Liquid from Integral Equation Approach Correlation Between PFP, ERAS, PC-SAFT Models and Experimental Validation Through Thermodynamic and Spectroscopic Analysis of Acetonitrile with Chloro Derivatives of Ethane Binary Mixtures at Varying Temperatures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1