通过碳化物上的键价和电荷加速C–O解理的预测

IF 5.6 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY International Journal of Minerals, Metallurgy, and Materials Pub Date : 2023-10-11 DOI:10.1007/s12613-023-2612-y
Yurong He, Kuan Lu, Jinjia Liu, Xinhua Gao, Xiaotong Liu, Yongwang Li, Chunfang Huo, James P. Lewis, Xiaodong Wen, Ning Li
{"title":"通过碳化物上的键价和电荷加速C–O解理的预测","authors":"Yurong He,&nbsp;Kuan Lu,&nbsp;Jinjia Liu,&nbsp;Xinhua Gao,&nbsp;Xiaotong Liu,&nbsp;Yongwang Li,&nbsp;Chunfang Huo,&nbsp;James P. Lewis,&nbsp;Xiaodong Wen,&nbsp;Ning Li","doi":"10.1007/s12613-023-2612-y","DOIUrl":null,"url":null,"abstract":"<div><p>The activation of CO on iron-based materials is a key elementary reaction for many chemical processes. We investigate CO adsorption and dissociation on a series of Fe, Fe<sub>3</sub>C, Fe<sub>5</sub>C<sub>2</sub>, and Fe<sub>2</sub>C catalysts through density functional theory calculations. We detect dramatically different performances for CO adsorption and activation on diverse surfaces and sites. The activation of CO is dependent on the local coordination of the molecule to the surface and on the bulk phase of the underlying catalyst. The bulk properties and the different local bonding environments lead to varying interactions between the adsorbed CO and the surface and thus yielding different activation levels of the C–O bond. We also examine the prediction of CO adsorption on different types of Fe-based catalysts by machine learning through linear regression models. We combine the features originating from surfaces and bulk phases to enhance the prediction of the activation energies and perform eight different linear regressions utilizing the feature engineering of polynomial representations. Among them, a ridge linear regression model with 2nd-degree polynomial feature generation predicted the best CO activation energy with a mean absolute error of 0.269 eV.</p></div>","PeriodicalId":14030,"journal":{"name":"International Journal of Minerals, Metallurgy, and Materials","volume":"30 10","pages":"2014 - 2024"},"PeriodicalIF":5.6000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Speeding up the prediction of C–O cleavage through bond valence and charge on iron carbides\",\"authors\":\"Yurong He,&nbsp;Kuan Lu,&nbsp;Jinjia Liu,&nbsp;Xinhua Gao,&nbsp;Xiaotong Liu,&nbsp;Yongwang Li,&nbsp;Chunfang Huo,&nbsp;James P. Lewis,&nbsp;Xiaodong Wen,&nbsp;Ning Li\",\"doi\":\"10.1007/s12613-023-2612-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The activation of CO on iron-based materials is a key elementary reaction for many chemical processes. We investigate CO adsorption and dissociation on a series of Fe, Fe<sub>3</sub>C, Fe<sub>5</sub>C<sub>2</sub>, and Fe<sub>2</sub>C catalysts through density functional theory calculations. We detect dramatically different performances for CO adsorption and activation on diverse surfaces and sites. The activation of CO is dependent on the local coordination of the molecule to the surface and on the bulk phase of the underlying catalyst. The bulk properties and the different local bonding environments lead to varying interactions between the adsorbed CO and the surface and thus yielding different activation levels of the C–O bond. We also examine the prediction of CO adsorption on different types of Fe-based catalysts by machine learning through linear regression models. We combine the features originating from surfaces and bulk phases to enhance the prediction of the activation energies and perform eight different linear regressions utilizing the feature engineering of polynomial representations. Among them, a ridge linear regression model with 2nd-degree polynomial feature generation predicted the best CO activation energy with a mean absolute error of 0.269 eV.</p></div>\",\"PeriodicalId\":14030,\"journal\":{\"name\":\"International Journal of Minerals, Metallurgy, and Materials\",\"volume\":\"30 10\",\"pages\":\"2014 - 2024\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2023-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Minerals, Metallurgy, and Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12613-023-2612-y\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Minerals, Metallurgy, and Materials","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12613-023-2612-y","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

铁基材料上CO的活化是许多化学过程中的关键元素反应。我们通过密度泛函理论计算研究了CO在一系列Fe、Fe3C、Fe5C2和Fe2C催化剂上的吸附和离解。我们在不同的表面和位点上检测到CO吸附和活化的显著不同的性能。CO的活化取决于分子与表面的局部配位以及底层催化剂的本体相。本体性质和不同的局部键合环境导致吸附的CO和表面之间的相互作用不同,从而产生不同的C–O键活化水平。我们还通过线性回归模型通过机器学习检验了CO在不同类型铁基催化剂上吸附的预测。我们将源自表面和体相的特征相结合,以增强对活化能的预测,并利用多项式表示的特征工程进行八种不同的线性回归。其中,具有二次多项式特征生成的岭线性回归模型预测了最佳CO活化能,平均绝对误差为0.269eV。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Speeding up the prediction of C–O cleavage through bond valence and charge on iron carbides

The activation of CO on iron-based materials is a key elementary reaction for many chemical processes. We investigate CO adsorption and dissociation on a series of Fe, Fe3C, Fe5C2, and Fe2C catalysts through density functional theory calculations. We detect dramatically different performances for CO adsorption and activation on diverse surfaces and sites. The activation of CO is dependent on the local coordination of the molecule to the surface and on the bulk phase of the underlying catalyst. The bulk properties and the different local bonding environments lead to varying interactions between the adsorbed CO and the surface and thus yielding different activation levels of the C–O bond. We also examine the prediction of CO adsorption on different types of Fe-based catalysts by machine learning through linear regression models. We combine the features originating from surfaces and bulk phases to enhance the prediction of the activation energies and perform eight different linear regressions utilizing the feature engineering of polynomial representations. Among them, a ridge linear regression model with 2nd-degree polynomial feature generation predicted the best CO activation energy with a mean absolute error of 0.269 eV.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.30
自引率
16.70%
发文量
205
审稿时长
2 months
期刊介绍: International Journal of Minerals, Metallurgy and Materials (Formerly known as Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material) provides an international medium for the publication of theoretical and experimental studies related to the fields of Minerals, Metallurgy and Materials. Papers dealing with minerals processing, mining, mine safety, environmental pollution and protection of mines, process metallurgy, metallurgical physical chemistry, structure and physical properties of materials, corrosion and resistance of materials, are viewed as suitable for publication.
期刊最新文献
Alkyl dimethyl betaine activates the low-temperature collection capacity of sodium oleate for scheelite Preparation of sodium molybdate from molybdenum concentrate by microwave roasting and alkali leaching Metal-to-insulator transitions in 3d-band correlated oxides containing Fe compositions Dual-ion carrier storage through Mg2+ addition for high-energy and long-life zinc-ion hybrid capacitor High corrosion and wear resistant electroless Ni-P gradient coatings on aviation aluminum alloy parts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1