凝胶聚合物电解质IL@UiO-66-NH2作为高性能全固态锂金属电池的填料

IF 5.6 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY International Journal of Minerals, Metallurgy, and Materials Pub Date : 2023-10-11 DOI:10.1007/s12613-023-2639-0
Tao Wei, Qi Zhang, Sijia Wang, Mengting Wang, Ye Liu, Cheng Sun, Yanyan Zhou, Qing Huang, Xiangyun Qiu, Fang Tian
{"title":"凝胶聚合物电解质IL@UiO-66-NH2作为高性能全固态锂金属电池的填料","authors":"Tao Wei,&nbsp;Qi Zhang,&nbsp;Sijia Wang,&nbsp;Mengting Wang,&nbsp;Ye Liu,&nbsp;Cheng Sun,&nbsp;Yanyan Zhou,&nbsp;Qing Huang,&nbsp;Xiangyun Qiu,&nbsp;Fang Tian","doi":"10.1007/s12613-023-2639-0","DOIUrl":null,"url":null,"abstract":"<div><p>All solid-state electrolytes have the advantages of good mechanical and thermal properties for safer energy storage, but their energy density has been limited by low ionic conductivity and large interfacial resistance caused by the poor Li<sup>+</sup> transport kinetics due to the solid–solid contacts between the electrodes and the solid-state electrolytes. Herein, a novel gel polymer electrolyte (UPP-5) composed of ionic liquid incorporated metal-organic frameworks nanoparticles (IL@MOFs) is designed, it exhibits satisfying electrochemical performances, consisting of an excellent electrochemical stability window (5.5 V) and an improved Li<sup>+</sup> transference number of 0.52. Moreover, the Li/UPP-5/LiFePO<sub>4</sub> full cells present an ultra-stable cycling performance at 0.2C for over 100 cycles almost without any decay in capacities. This study might provide new insight to create an effective Li<sup>+</sup> conductive network for the development of all-solid-state lithium-ion batteries.</p></div>","PeriodicalId":14030,"journal":{"name":"International Journal of Minerals, Metallurgy, and Materials","volume":"30 10","pages":"1897 - 1905"},"PeriodicalIF":5.6000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12613-023-2639-0.pdf","citationCount":"1","resultStr":"{\"title\":\"A gel polymer electrolyte with IL@UiO-66-NH2 as fillers for high-performance all-solid-state lithium metal batteries\",\"authors\":\"Tao Wei,&nbsp;Qi Zhang,&nbsp;Sijia Wang,&nbsp;Mengting Wang,&nbsp;Ye Liu,&nbsp;Cheng Sun,&nbsp;Yanyan Zhou,&nbsp;Qing Huang,&nbsp;Xiangyun Qiu,&nbsp;Fang Tian\",\"doi\":\"10.1007/s12613-023-2639-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>All solid-state electrolytes have the advantages of good mechanical and thermal properties for safer energy storage, but their energy density has been limited by low ionic conductivity and large interfacial resistance caused by the poor Li<sup>+</sup> transport kinetics due to the solid–solid contacts between the electrodes and the solid-state electrolytes. Herein, a novel gel polymer electrolyte (UPP-5) composed of ionic liquid incorporated metal-organic frameworks nanoparticles (IL@MOFs) is designed, it exhibits satisfying electrochemical performances, consisting of an excellent electrochemical stability window (5.5 V) and an improved Li<sup>+</sup> transference number of 0.52. Moreover, the Li/UPP-5/LiFePO<sub>4</sub> full cells present an ultra-stable cycling performance at 0.2C for over 100 cycles almost without any decay in capacities. This study might provide new insight to create an effective Li<sup>+</sup> conductive network for the development of all-solid-state lithium-ion batteries.</p></div>\",\"PeriodicalId\":14030,\"journal\":{\"name\":\"International Journal of Minerals, Metallurgy, and Materials\",\"volume\":\"30 10\",\"pages\":\"1897 - 1905\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2023-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s12613-023-2639-0.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Minerals, Metallurgy, and Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12613-023-2639-0\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Minerals, Metallurgy, and Materials","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12613-023-2639-0","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

所有固态电解质都具有良好的机械和热性能以实现更安全的储能的优点,但它们的能量密度受到低离子电导率和大界面电阻的限制,这是由于电极和固态电解质之间的固体-固体接触导致的较差的Li+传输动力学造成的。本文提出了一种新型的凝胶聚合物电解质(UPP-5),该电解质由离子液体掺入金属-有机框架纳米颗粒组成(IL@MOFs)它表现出令人满意的电化学性能,包括优异的电化学稳定性窗口(5.5V)和0.52的改进的Li+转移数。此外,Li/UP-5/LiFePO4全电池在0.2摄氏度下表现出超过100次循环的超稳定循环性能,几乎没有任何容量衰减。这项研究可能为开发全固态锂离子电池创造一个有效的Li+导电网络提供新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A gel polymer electrolyte with IL@UiO-66-NH2 as fillers for high-performance all-solid-state lithium metal batteries

All solid-state electrolytes have the advantages of good mechanical and thermal properties for safer energy storage, but their energy density has been limited by low ionic conductivity and large interfacial resistance caused by the poor Li+ transport kinetics due to the solid–solid contacts between the electrodes and the solid-state electrolytes. Herein, a novel gel polymer electrolyte (UPP-5) composed of ionic liquid incorporated metal-organic frameworks nanoparticles (IL@MOFs) is designed, it exhibits satisfying electrochemical performances, consisting of an excellent electrochemical stability window (5.5 V) and an improved Li+ transference number of 0.52. Moreover, the Li/UPP-5/LiFePO4 full cells present an ultra-stable cycling performance at 0.2C for over 100 cycles almost without any decay in capacities. This study might provide new insight to create an effective Li+ conductive network for the development of all-solid-state lithium-ion batteries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.30
自引率
16.70%
发文量
205
审稿时长
2 months
期刊介绍: International Journal of Minerals, Metallurgy and Materials (Formerly known as Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material) provides an international medium for the publication of theoretical and experimental studies related to the fields of Minerals, Metallurgy and Materials. Papers dealing with minerals processing, mining, mine safety, environmental pollution and protection of mines, process metallurgy, metallurgical physical chemistry, structure and physical properties of materials, corrosion and resistance of materials, are viewed as suitable for publication.
期刊最新文献
Alkyl dimethyl betaine activates the low-temperature collection capacity of sodium oleate for scheelite Preparation of sodium molybdate from molybdenum concentrate by microwave roasting and alkali leaching Metal-to-insulator transitions in 3d-band correlated oxides containing Fe compositions Dual-ion carrier storage through Mg2+ addition for high-energy and long-life zinc-ion hybrid capacitor High corrosion and wear resistant electroless Ni-P gradient coatings on aviation aluminum alloy parts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1