通过设计圆柱形纳米孔内表面的波形来提高其在渗透发电中的性能。

IF 2.9 3区 化学 Q3 CHEMISTRY, PHYSICAL Physical Chemistry Chemical Physics Pub Date : 2023-10-16 DOI:10.1039/D3CP03637E
Chung-Wei Liu and Jyh-Ping Hsu
{"title":"通过设计圆柱形纳米孔内表面的波形来提高其在渗透发电中的性能。","authors":"Chung-Wei Liu and Jyh-Ping Hsu","doi":"10.1039/D3CP03637E","DOIUrl":null,"url":null,"abstract":"<p >Recently, nanofluidic osmotic power, a promising technology converting the salinity difference between brine and fresh water into electricity using nanopores, has drawn the attention of researchers. Previous studies in this field were based mainly on nanopores having a smooth inner surface. To enhance the performance of nanofluidic osmotic power, we investigated four types of cylindrical nanopores, each with a unique waveform wall design (square, saw-tooth, triangle, and sine waves). This study focused on elucidating the influence of bulk salt concentration and geometric characteristics at the solid–liquid interface. We demonstrated that the presence of a waveform wall introduces new variables that have a significant impact on the overall performance of a nanofluidic osmotic power system. At the optimal amplitude of the waveform wall, raising waveform frequency can remarkably improve the osmotic current, diffusion potential, maximum power, and maximum efficiency. The present study provides a novel aspect of osmotic power, where the geometric nature of the nanopore reveals profound and intriguing phenomena primarily attributed to the distribution of ions within its interior.</p>","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":" 41","pages":" 28363-28372"},"PeriodicalIF":2.9000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing the performance of a cylindrical nanopore in osmotic power generation through designing the waveform of its inner surface†\",\"authors\":\"Chung-Wei Liu and Jyh-Ping Hsu\",\"doi\":\"10.1039/D3CP03637E\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Recently, nanofluidic osmotic power, a promising technology converting the salinity difference between brine and fresh water into electricity using nanopores, has drawn the attention of researchers. Previous studies in this field were based mainly on nanopores having a smooth inner surface. To enhance the performance of nanofluidic osmotic power, we investigated four types of cylindrical nanopores, each with a unique waveform wall design (square, saw-tooth, triangle, and sine waves). This study focused on elucidating the influence of bulk salt concentration and geometric characteristics at the solid–liquid interface. We demonstrated that the presence of a waveform wall introduces new variables that have a significant impact on the overall performance of a nanofluidic osmotic power system. At the optimal amplitude of the waveform wall, raising waveform frequency can remarkably improve the osmotic current, diffusion potential, maximum power, and maximum efficiency. The present study provides a novel aspect of osmotic power, where the geometric nature of the nanopore reveals profound and intriguing phenomena primarily attributed to the distribution of ions within its interior.</p>\",\"PeriodicalId\":99,\"journal\":{\"name\":\"Physical Chemistry Chemical Physics\",\"volume\":\" 41\",\"pages\":\" 28363-28372\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Chemistry Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2023/cp/d3cp03637e\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/cp/d3cp03637e","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

近年来,纳米流体渗透力作为一种利用纳米孔将盐水和淡水之间的盐度差转化为电能的有前途的技术,引起了研究人员的注意。该领域先前的研究主要基于具有光滑内表面的纳米孔。为了提高纳米流体渗透力的性能,我们研究了四种类型的圆柱形纳米孔,每种孔都有独特的波形壁设计(方形、锯齿形、三角形和正弦波)。本研究的重点是阐明固体-液体界面上的本体盐浓度和几何特性的影响。我们证明,波形壁的存在引入了新的变量,这些变量对纳米流体渗透力系统的整体性能有重大影响。在波形壁的最佳振幅下,提高波形频率可以显著提高渗透电流、扩散电位、最大功率和最大效率。本研究提供了渗透力的一个新方面,其中纳米孔的几何性质揭示了深刻而有趣的现象,主要归因于离子在其内部的分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing the performance of a cylindrical nanopore in osmotic power generation through designing the waveform of its inner surface†

Recently, nanofluidic osmotic power, a promising technology converting the salinity difference between brine and fresh water into electricity using nanopores, has drawn the attention of researchers. Previous studies in this field were based mainly on nanopores having a smooth inner surface. To enhance the performance of nanofluidic osmotic power, we investigated four types of cylindrical nanopores, each with a unique waveform wall design (square, saw-tooth, triangle, and sine waves). This study focused on elucidating the influence of bulk salt concentration and geometric characteristics at the solid–liquid interface. We demonstrated that the presence of a waveform wall introduces new variables that have a significant impact on the overall performance of a nanofluidic osmotic power system. At the optimal amplitude of the waveform wall, raising waveform frequency can remarkably improve the osmotic current, diffusion potential, maximum power, and maximum efficiency. The present study provides a novel aspect of osmotic power, where the geometric nature of the nanopore reveals profound and intriguing phenomena primarily attributed to the distribution of ions within its interior.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Chemistry Chemical Physics
Physical Chemistry Chemical Physics 化学-物理:原子、分子和化学物理
CiteScore
5.50
自引率
9.10%
发文量
2675
审稿时长
2.0 months
期刊介绍: Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions. The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.
期刊最新文献
Correction: Spin-dependent Seebeck effect in zigzag-edge antimonene nanoribbons. I2BODIPY as a new photoswitchable spin label for light-induced pulsed EPR dipolar spectroscopy exploiting magnetophotoselection. Beyond 22% Power Conversion Efficiency in Type-II MoSi2As4/MoGe2N4 Photovoltaic vdW Heterostructure Kinetics of tautomerisation of thiouracils and cognate species at low temperatures: theory versus experiment Investigating Valence Orbitals and Cationic Structure of 2,6-Difluoropyridine via High-Resolution VUV-MATI Spectroscopy and Franck–Condon Simulations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1