NFE2L1通过转录调节HJURP抑制脱铁性贫血,并参与口腔鳞状细胞癌的进展。

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2023-12-01 Epub Date: 2023-10-18 DOI:10.1007/s10863-023-09987-2
Meixia Zhang, Zhonghou Wang, Guang Yang, Linfu Han, Xiaofeng Wang
{"title":"NFE2L1通过转录调节HJURP抑制脱铁性贫血,并参与口腔鳞状细胞癌的进展。","authors":"Meixia Zhang, Zhonghou Wang, Guang Yang, Linfu Han, Xiaofeng Wang","doi":"10.1007/s10863-023-09987-2","DOIUrl":null,"url":null,"abstract":"<p><p>Oral squamous cell carcinoma (OSCC) is a common head and neck malignancy with increasing mortality and high recurrence. In this work, we aim to explore the functional role of NFE2 like bZIP transcription factor 1 (NFE2L1) in OSCC progression. Based on databases analysis, we found that NFE2L1 was overexpressed in OSCC tumor tissues, and elevated NFE2L1 level induced poor prognosis of OSCC patients. Our results showed that NFE2L1 is upregulated in OSCC cells and overexpression of NFE2L1 promotes cell proliferation, and reduces the sensitivity of OSCC cells to erastin-induced ferroptosis. NFE2L1 upregulation decreased the levels of Fe<sup>2+</sup>, lipid reactive oxygen species and content of malondialdehyde, and increased the level of the key negative regulator of ferroptosis, GPX4 and SLC7A11. In NFE2L1 suppressed cells, these trends were reversed. Further results of dual luciferase reporter and chromatin immunoprecipitation assays confirmed that NFE2L1 could bind to the promoter of Holliday junction recognition protein (HJURP) to increase the transcriptional activity of HJURP, thus upregulating its expression. Inhibition of HJURP attenuated the proliferation and ferroptosis inhibition in NFE2L1 upregulated cells. In vivo tumorigenicity assay further proved that NFE2L1 promotes OSCC tumor growth. In summary, NFE2L1 restrains ferroptosis by transcriptionally regulating HJURP and participates in the progress of OSCC. Thus, NFE2L1 plays a key role in OSCC development and may be a promising therapeutic target for OSCC.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NFE2L1 restrains ferroptosis by transcriptionally regulating HJURP and participates in the progress of oral squamous cell carcinoma.\",\"authors\":\"Meixia Zhang, Zhonghou Wang, Guang Yang, Linfu Han, Xiaofeng Wang\",\"doi\":\"10.1007/s10863-023-09987-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Oral squamous cell carcinoma (OSCC) is a common head and neck malignancy with increasing mortality and high recurrence. In this work, we aim to explore the functional role of NFE2 like bZIP transcription factor 1 (NFE2L1) in OSCC progression. Based on databases analysis, we found that NFE2L1 was overexpressed in OSCC tumor tissues, and elevated NFE2L1 level induced poor prognosis of OSCC patients. Our results showed that NFE2L1 is upregulated in OSCC cells and overexpression of NFE2L1 promotes cell proliferation, and reduces the sensitivity of OSCC cells to erastin-induced ferroptosis. NFE2L1 upregulation decreased the levels of Fe<sup>2+</sup>, lipid reactive oxygen species and content of malondialdehyde, and increased the level of the key negative regulator of ferroptosis, GPX4 and SLC7A11. In NFE2L1 suppressed cells, these trends were reversed. Further results of dual luciferase reporter and chromatin immunoprecipitation assays confirmed that NFE2L1 could bind to the promoter of Holliday junction recognition protein (HJURP) to increase the transcriptional activity of HJURP, thus upregulating its expression. Inhibition of HJURP attenuated the proliferation and ferroptosis inhibition in NFE2L1 upregulated cells. In vivo tumorigenicity assay further proved that NFE2L1 promotes OSCC tumor growth. In summary, NFE2L1 restrains ferroptosis by transcriptionally regulating HJURP and participates in the progress of OSCC. Thus, NFE2L1 plays a key role in OSCC development and may be a promising therapeutic target for OSCC.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10863-023-09987-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/10/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10863-023-09987-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

口腔鳞状细胞癌是一种常见的头颈部恶性肿瘤,死亡率高,复发率高。在这项工作中,我们旨在探索类似NFE2的bZIP转录因子1(NFE2L1)在OSCC进展中的功能作用。基于数据库分析,我们发现NFE2L1在OSCC肿瘤组织中过表达,并且NFE2L1水平升高导致OSCC患者预后不良。我们的结果表明,NFE2L1在OSCC细胞中上调,并且NFE2L1的过表达促进细胞增殖,并降低OSCC细胞对erastin诱导的脱铁性贫血的敏感性。NFE2L1的上调降低了Fe2+、脂质活性氧的水平和丙二醛的含量,并增加了脱铁性贫血的关键负调控因子GPX4和SLC7A11的水平。在NFE2L1被抑制的细胞中,这些趋势被逆转。双荧光素酶报告子和染色质免疫沉淀分析的进一步结果证实,NFE2L1可以与霍乐迪连接识别蛋白(HJURP)的启动子结合,增加HJURP的转录活性,从而上调其表达。HJURP的抑制减弱了NFE2L1上调细胞的增殖和脱铁抑制。体内致瘤性试验进一步证明NFE2L1促进OSCC肿瘤生长。总之,NFE2L1通过转录调节HJURP来抑制脱铁性贫血,并参与OSCC的进展。因此,NFE2L1在OSCC的发展中起着关键作用,可能是OSCC的一个有前途的治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
NFE2L1 restrains ferroptosis by transcriptionally regulating HJURP and participates in the progress of oral squamous cell carcinoma.

Oral squamous cell carcinoma (OSCC) is a common head and neck malignancy with increasing mortality and high recurrence. In this work, we aim to explore the functional role of NFE2 like bZIP transcription factor 1 (NFE2L1) in OSCC progression. Based on databases analysis, we found that NFE2L1 was overexpressed in OSCC tumor tissues, and elevated NFE2L1 level induced poor prognosis of OSCC patients. Our results showed that NFE2L1 is upregulated in OSCC cells and overexpression of NFE2L1 promotes cell proliferation, and reduces the sensitivity of OSCC cells to erastin-induced ferroptosis. NFE2L1 upregulation decreased the levels of Fe2+, lipid reactive oxygen species and content of malondialdehyde, and increased the level of the key negative regulator of ferroptosis, GPX4 and SLC7A11. In NFE2L1 suppressed cells, these trends were reversed. Further results of dual luciferase reporter and chromatin immunoprecipitation assays confirmed that NFE2L1 could bind to the promoter of Holliday junction recognition protein (HJURP) to increase the transcriptional activity of HJURP, thus upregulating its expression. Inhibition of HJURP attenuated the proliferation and ferroptosis inhibition in NFE2L1 upregulated cells. In vivo tumorigenicity assay further proved that NFE2L1 promotes OSCC tumor growth. In summary, NFE2L1 restrains ferroptosis by transcriptionally regulating HJURP and participates in the progress of OSCC. Thus, NFE2L1 plays a key role in OSCC development and may be a promising therapeutic target for OSCC.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1