Yikai Liu , Zian Zhang , Jun Li , Bingying Chang , Qingbo Lin , Fengyu Wang , Wenzhe Wang , Haining Zhang
{"title":"Piezo1将机械应力转化为促衰老信号,并促进骨关节炎的严重程度。","authors":"Yikai Liu , Zian Zhang , Jun Li , Bingying Chang , Qingbo Lin , Fengyu Wang , Wenzhe Wang , Haining Zhang","doi":"10.1016/j.mad.2023.111880","DOIUrl":null,"url":null,"abstract":"<div><p><span>Osteoarthritis (OA) is a prevalent disease among elderly people and is often characterized by chronic joint pain and dysfunction. Recently, growing evidence of chondrocyte senescence in the pathogenesis of OA has been found, and targeting senescence has started to be recognized as a therapeutic approach for OA. Piezo1, a mechanosensitive Ca</span><sup>2+</sup><span> channel, has been reported to be harmful in sensing abnormal mechanical overloading and leading to chondrocyte apoptosis. However, whether Piezo1 can transform mechanical signals into senescence signals has rarely been reported. In this study, we found that severe OA cartilage expressed more Piezo1 and the senescence markers p16<span> and p21. 24 h of periodic mechanical stress induced chondrocyte senescence in vitro. In addition, we demonstrated the pivotal role of Piezo1 in OA chondrocyte senescence induced by mechanical stress. Piezo1 sensed mechanical stress and promoted chondrocyte senescence via its Ca</span></span><sup>2+</sup> channel ability. Moreover, Piezo1 promoted SASP factors production under mechanical stress, particularly in IL-6 and IL-1β. p38MAPK and NF-κB activation were two key pathways that responded to Piezo1 activation and promoted IL-6 and IL-1β production, respectively. Collectively, our study revealed a connection between abnormal mechanical stress and chondrocyte senescence, which was mediated by Piezo1.</p></div>","PeriodicalId":18340,"journal":{"name":"Mechanisms of Ageing and Development","volume":"216 ","pages":"Article 111880"},"PeriodicalIF":5.3000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Piezo1 transforms mechanical stress into pro senescence signals and promotes osteoarthritis severity\",\"authors\":\"Yikai Liu , Zian Zhang , Jun Li , Bingying Chang , Qingbo Lin , Fengyu Wang , Wenzhe Wang , Haining Zhang\",\"doi\":\"10.1016/j.mad.2023.111880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Osteoarthritis (OA) is a prevalent disease among elderly people and is often characterized by chronic joint pain and dysfunction. Recently, growing evidence of chondrocyte senescence in the pathogenesis of OA has been found, and targeting senescence has started to be recognized as a therapeutic approach for OA. Piezo1, a mechanosensitive Ca</span><sup>2+</sup><span> channel, has been reported to be harmful in sensing abnormal mechanical overloading and leading to chondrocyte apoptosis. However, whether Piezo1 can transform mechanical signals into senescence signals has rarely been reported. In this study, we found that severe OA cartilage expressed more Piezo1 and the senescence markers p16<span> and p21. 24 h of periodic mechanical stress induced chondrocyte senescence in vitro. In addition, we demonstrated the pivotal role of Piezo1 in OA chondrocyte senescence induced by mechanical stress. Piezo1 sensed mechanical stress and promoted chondrocyte senescence via its Ca</span></span><sup>2+</sup> channel ability. Moreover, Piezo1 promoted SASP factors production under mechanical stress, particularly in IL-6 and IL-1β. p38MAPK and NF-κB activation were two key pathways that responded to Piezo1 activation and promoted IL-6 and IL-1β production, respectively. Collectively, our study revealed a connection between abnormal mechanical stress and chondrocyte senescence, which was mediated by Piezo1.</p></div>\",\"PeriodicalId\":18340,\"journal\":{\"name\":\"Mechanisms of Ageing and Development\",\"volume\":\"216 \",\"pages\":\"Article 111880\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2023-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanisms of Ageing and Development\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0047637423001069\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanisms of Ageing and Development","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047637423001069","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Piezo1 transforms mechanical stress into pro senescence signals and promotes osteoarthritis severity
Osteoarthritis (OA) is a prevalent disease among elderly people and is often characterized by chronic joint pain and dysfunction. Recently, growing evidence of chondrocyte senescence in the pathogenesis of OA has been found, and targeting senescence has started to be recognized as a therapeutic approach for OA. Piezo1, a mechanosensitive Ca2+ channel, has been reported to be harmful in sensing abnormal mechanical overloading and leading to chondrocyte apoptosis. However, whether Piezo1 can transform mechanical signals into senescence signals has rarely been reported. In this study, we found that severe OA cartilage expressed more Piezo1 and the senescence markers p16 and p21. 24 h of periodic mechanical stress induced chondrocyte senescence in vitro. In addition, we demonstrated the pivotal role of Piezo1 in OA chondrocyte senescence induced by mechanical stress. Piezo1 sensed mechanical stress and promoted chondrocyte senescence via its Ca2+ channel ability. Moreover, Piezo1 promoted SASP factors production under mechanical stress, particularly in IL-6 and IL-1β. p38MAPK and NF-κB activation were two key pathways that responded to Piezo1 activation and promoted IL-6 and IL-1β production, respectively. Collectively, our study revealed a connection between abnormal mechanical stress and chondrocyte senescence, which was mediated by Piezo1.
期刊介绍:
Mechanisms of Ageing and Development is a multidisciplinary journal aimed at revealing the molecular, biochemical and biological mechanisms that underlie the processes of aging and development in various species as well as of age-associated diseases. Emphasis is placed on investigations that delineate the contribution of macromolecular damage and cytotoxicity, genetic programs, epigenetics and genetic instability, mitochondrial function, alterations of metabolism and innovative anti-aging approaches. For all of the mentioned studies it is necessary to address the underlying mechanisms.
Mechanisms of Ageing and Development publishes original research, review and mini-review articles. The journal also publishes Special Issues that focus on emerging research areas. Special issues may include all types of articles following peered review. Proposals should be sent directly to the Editor-in-Chief.