以秀丽隐杆线虫为模型的植物甾醇脱烷基工程防治植食性线虫。

IF 2.4 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular Biotechnology Pub Date : 2024-10-01 Epub Date: 2023-10-16 DOI:10.1007/s12033-023-00869-x
Qinhua Gan, Xinyu Cui, Lin Zhang, Wenxu Zhou, Yandu Lu
{"title":"以秀丽隐杆线虫为模型的植物甾醇脱烷基工程防治植食性线虫。","authors":"Qinhua Gan, Xinyu Cui, Lin Zhang, Wenxu Zhou, Yandu Lu","doi":"10.1007/s12033-023-00869-x","DOIUrl":null,"url":null,"abstract":"<p><p>Plant-parasitic nematodes ingest and convert host phytosterols via dealkylation to cholesterol for both structural and hormonal requirements. The insect 24-dehydrocholesterol reductase (DHCR24) was shown in vitro as a committed enzyme in the dealkylation via chemical blocking. However, an increased brood size and ovulation rate, instead compromised development, were observed in the engineered nematode Caenorhabditis elegans where the DHCR24 gene was knocked down, indicating the relationship between DHCR24 and dealkylation and their function in nematodes remains illusive. In this study, a defect in C. elegans DHCR24 causes impaired growth of the nematode with sitosterol (a major component of phytosterols) as a sole sterol source. Plant sterols with rationally designed structure (null substrates for dealkylation) can't be converted to cholesterol in wild-type worms, and their development was completely halted. This study underpins the essential function of DHCR24 in nematodes and would be beneficial for the development of novel nematocidal strategies.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":"2769-2777"},"PeriodicalIF":2.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Control Phytophagous Nematodes By Engineering Phytosterol Dealkylation Caenorhabditis elegans as a Model.\",\"authors\":\"Qinhua Gan, Xinyu Cui, Lin Zhang, Wenxu Zhou, Yandu Lu\",\"doi\":\"10.1007/s12033-023-00869-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Plant-parasitic nematodes ingest and convert host phytosterols via dealkylation to cholesterol for both structural and hormonal requirements. The insect 24-dehydrocholesterol reductase (DHCR24) was shown in vitro as a committed enzyme in the dealkylation via chemical blocking. However, an increased brood size and ovulation rate, instead compromised development, were observed in the engineered nematode Caenorhabditis elegans where the DHCR24 gene was knocked down, indicating the relationship between DHCR24 and dealkylation and their function in nematodes remains illusive. In this study, a defect in C. elegans DHCR24 causes impaired growth of the nematode with sitosterol (a major component of phytosterols) as a sole sterol source. Plant sterols with rationally designed structure (null substrates for dealkylation) can't be converted to cholesterol in wild-type worms, and their development was completely halted. This study underpins the essential function of DHCR24 in nematodes and would be beneficial for the development of novel nematocidal strategies.</p>\",\"PeriodicalId\":18865,\"journal\":{\"name\":\"Molecular Biotechnology\",\"volume\":\" \",\"pages\":\"2769-2777\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Biotechnology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12033-023-00869-x\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/10/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12033-023-00869-x","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/16 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

植物寄生线虫通过脱烷基作用摄入宿主植物甾醇并将其转化为胆固醇,以满足结构和激素需求。昆虫24-脱氢胆固醇还原酶(DHCR24)在体外显示为通过化学阻断进行脱烷基的承诺酶。然而,在DHCR24基因被敲除的工程线虫秀丽隐杆线虫中,观察到了孵化量和排卵率的增加,而不是发育受损,这表明DHCR24与脱烷基化之间的关系及其在线虫中的功能仍然是未知的。在本研究中,秀丽隐杆线虫DHCR24的缺陷导致线虫生长受损,谷甾醇(植物甾醇的主要成分)是唯一的甾醇来源。结构合理的植物甾醇(脱烷基的无效底物)在野生型蠕虫中不能转化为胆固醇,其发育完全停止。这项研究支持了DHCR24在线虫中的基本功能,并将有利于开发新的杀线虫策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Control Phytophagous Nematodes By Engineering Phytosterol Dealkylation Caenorhabditis elegans as a Model.

Plant-parasitic nematodes ingest and convert host phytosterols via dealkylation to cholesterol for both structural and hormonal requirements. The insect 24-dehydrocholesterol reductase (DHCR24) was shown in vitro as a committed enzyme in the dealkylation via chemical blocking. However, an increased brood size and ovulation rate, instead compromised development, were observed in the engineered nematode Caenorhabditis elegans where the DHCR24 gene was knocked down, indicating the relationship between DHCR24 and dealkylation and their function in nematodes remains illusive. In this study, a defect in C. elegans DHCR24 causes impaired growth of the nematode with sitosterol (a major component of phytosterols) as a sole sterol source. Plant sterols with rationally designed structure (null substrates for dealkylation) can't be converted to cholesterol in wild-type worms, and their development was completely halted. This study underpins the essential function of DHCR24 in nematodes and would be beneficial for the development of novel nematocidal strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Biotechnology
Molecular Biotechnology 医学-生化与分子生物学
CiteScore
4.10
自引率
3.80%
发文量
165
审稿时长
6 months
期刊介绍: Molecular Biotechnology publishes original research papers on the application of molecular biology to both basic and applied research in the field of biotechnology. Particular areas of interest include the following: stability and expression of cloned gene products, cell transformation, gene cloning systems and the production of recombinant proteins, protein purification and analysis, transgenic species, developmental biology, mutation analysis, the applications of DNA fingerprinting, RNA interference, and PCR technology, microarray technology, proteomics, mass spectrometry, bioinformatics, plant molecular biology, microbial genetics, gene probes and the diagnosis of disease, pharmaceutical and health care products, therapeutic agents, vaccines, gene targeting, gene therapy, stem cell technology and tissue engineering, antisense technology, protein engineering and enzyme technology, monoclonal antibodies, glycobiology and glycomics, and agricultural biotechnology.
期刊最新文献
METTL3 Mediated MALAT1 m6A Modification Promotes Proliferation and Metastasis in Osteosarcoma Cells. FGF2 Functions in H2S's Attenuating Effect on Brain Injury Induced by Deep Hypothermic Circulatory Arrest in Rats. An In Silico Multi-epitopes Vaccine Ensemble and Characterization Against Nosocomial Proteus penneri. Comprehensive Analysis of the Complete Chloroplast Genome of Cinnamomum daphnoides (Lauraceae), An Endangered Island Endemic Plant. HAGLR, A Long Non-coding RNA of Potential Tumor Suppressive Function in Clear Cell Renal Cell Carcinoma: Diagnostic and Prognostic Implications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1