肌红蛋白敲除斑马鱼模型的产生和验证。

IF 2.7 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Transgenic Research Pub Date : 2023-12-01 Epub Date: 2023-10-17 DOI:10.1007/s11248-023-00369-3
Rasmus Hejlesen, Kasper Kjær-Sørensen, Angela Fago, Claus Oxvig
{"title":"肌红蛋白敲除斑马鱼模型的产生和验证。","authors":"Rasmus Hejlesen, Kasper Kjær-Sørensen, Angela Fago, Claus Oxvig","doi":"10.1007/s11248-023-00369-3","DOIUrl":null,"url":null,"abstract":"<p><p>Previous studies using myoglobin (Mb) knockout mice and knockdown zebrafish have presented conflicting results about in vivo phenotypes resulting from the loss of this conserved and highly expressed protein, and therefore a new well-characterized knockout model is warranted. We here describe the generation of three distinct zebrafish mb knockout lines using the CRISPR/Cas system. None of the three lines exhibited any morphological phenotypes, changes in length, or lethality during embryonic and larval development. The adult homozygous knockout mb(Auzf13.2) zebrafish line were absent of Mb protein, had an almost complete degradation of mb mRNA, and showed no changes in viability, length, or heart size. Furthermore, transcriptomic analysis of adult heart tissue showed that mb knockout did not cause altered expression of other genes. Lastly, no off-targeting was observed in 36 screened loci. In conclusion, we have generated three mb knockout lines with indistinguishable phenotypes during embryonic and larval development and validated one of these lines, mb(Auzf13.2), to have no signs of genetic compensation or off-target effects in the adult heart. These findings suggests that the mb(Auzf13.2) shows promise as a candidate for investigating the biological role of Mb in zebrafish.</p>","PeriodicalId":23258,"journal":{"name":"Transgenic Research","volume":" ","pages":"537-546"},"PeriodicalIF":2.7000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10713697/pdf/","citationCount":"0","resultStr":"{\"title\":\"Generation and validation of a myoglobin knockout zebrafish model.\",\"authors\":\"Rasmus Hejlesen, Kasper Kjær-Sørensen, Angela Fago, Claus Oxvig\",\"doi\":\"10.1007/s11248-023-00369-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Previous studies using myoglobin (Mb) knockout mice and knockdown zebrafish have presented conflicting results about in vivo phenotypes resulting from the loss of this conserved and highly expressed protein, and therefore a new well-characterized knockout model is warranted. We here describe the generation of three distinct zebrafish mb knockout lines using the CRISPR/Cas system. None of the three lines exhibited any morphological phenotypes, changes in length, or lethality during embryonic and larval development. The adult homozygous knockout mb(Auzf13.2) zebrafish line were absent of Mb protein, had an almost complete degradation of mb mRNA, and showed no changes in viability, length, or heart size. Furthermore, transcriptomic analysis of adult heart tissue showed that mb knockout did not cause altered expression of other genes. Lastly, no off-targeting was observed in 36 screened loci. In conclusion, we have generated three mb knockout lines with indistinguishable phenotypes during embryonic and larval development and validated one of these lines, mb(Auzf13.2), to have no signs of genetic compensation or off-target effects in the adult heart. These findings suggests that the mb(Auzf13.2) shows promise as a candidate for investigating the biological role of Mb in zebrafish.</p>\",\"PeriodicalId\":23258,\"journal\":{\"name\":\"Transgenic Research\",\"volume\":\" \",\"pages\":\"537-546\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10713697/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transgenic Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11248-023-00369-3\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/10/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transgenic Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11248-023-00369-3","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/17 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

先前使用肌红蛋白(Mb)敲除小鼠和敲除斑马鱼的研究对这种保守和高表达蛋白的缺失导致的体内表型提出了相互矛盾的结果,因此有必要建立一种新的特征明确的敲除模型。我们在这里描述了使用CRISPR/Cas系统产生三个不同的斑马鱼mb敲除系。三个品系在胚胎和幼虫发育过程中都没有表现出任何形态表型、长度变化或致死性。成年纯合敲除mb(Auzf13.2)斑马鱼系没有mb蛋白,mb mRNA几乎完全降解,并且在活力、长度或心脏大小方面没有变化。此外,对成人心脏组织的转录组学分析表明,mb敲除不会导致其他基因表达的改变。最后,在36个筛选的基因座中没有观察到脱靶。总之,我们已经产生了三个在胚胎和幼虫发育过程中表型不可区分的mb敲除系,并验证了其中一个系mb(Auzf13.2)在成年心脏中没有遗传补偿或脱靶效应的迹象。这些发现表明,mb(Auzf13.2)有望成为研究mb在斑马鱼中生物学作用的候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Generation and validation of a myoglobin knockout zebrafish model.

Previous studies using myoglobin (Mb) knockout mice and knockdown zebrafish have presented conflicting results about in vivo phenotypes resulting from the loss of this conserved and highly expressed protein, and therefore a new well-characterized knockout model is warranted. We here describe the generation of three distinct zebrafish mb knockout lines using the CRISPR/Cas system. None of the three lines exhibited any morphological phenotypes, changes in length, or lethality during embryonic and larval development. The adult homozygous knockout mb(Auzf13.2) zebrafish line were absent of Mb protein, had an almost complete degradation of mb mRNA, and showed no changes in viability, length, or heart size. Furthermore, transcriptomic analysis of adult heart tissue showed that mb knockout did not cause altered expression of other genes. Lastly, no off-targeting was observed in 36 screened loci. In conclusion, we have generated three mb knockout lines with indistinguishable phenotypes during embryonic and larval development and validated one of these lines, mb(Auzf13.2), to have no signs of genetic compensation or off-target effects in the adult heart. These findings suggests that the mb(Auzf13.2) shows promise as a candidate for investigating the biological role of Mb in zebrafish.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Transgenic Research
Transgenic Research 生物-生化研究方法
CiteScore
5.40
自引率
0.00%
发文量
38
审稿时长
4-8 weeks
期刊介绍: Transgenic Research focusses on transgenic and genome edited higher organisms. Manuscripts emphasizing biotechnological applications are strongly encouraged. Intellectual property, ethical issues, societal impact and regulatory aspects also fall within the scope of the journal. Transgenic Research aims to bridge the gap between fundamental and applied science in molecular biology and biotechnology for the plant and animal academic and associated industry communities. Transgenic Research publishes -Original Papers -Reviews: Should critically summarize the current state-of-the-art of the subject in a dispassionate way. Authors are requested to contact a Board Member before submission. Reviews should not be descriptive; rather they should present the most up-to-date information on the subject in a dispassionate and critical way. Perspective Reviews which can address new or controversial aspects are encouraged. -Brief Communications: Should report significant developments in methodology and experimental transgenic higher organisms
期刊最新文献
Effect of transgene on salt tolerance of tobacco. Resistance of Populus davidiana × P. bolleana overexpressing cinnamoyl-CoA reductase gene to Lymantria dispar larvae. Development of a new flippase-dependent mouse model for red fluorescence-based isolation of KRASG12D oncogene-expressing tumor cells. Expression of Agrobacterium Isopentenyl transferase (IPT) gene in wheat improves drought tolerance. NtLPA1 overexpression regulates the growth of tobacco and enhances resistance to blight.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1