Maxine Draper, Megan Jean Bester, Mia-Jeanne Van Rooy, Hester Magdalena Oberholzer
{"title":"Spraque-Dawley大鼠模型暴露于铜、锰和汞混合物后的神经系统不良反应:超微结构研究。","authors":"Maxine Draper, Megan Jean Bester, Mia-Jeanne Van Rooy, Hester Magdalena Oberholzer","doi":"10.1080/01913123.2023.2270580","DOIUrl":null,"url":null,"abstract":"<p><p>Exposure to environmental metal pollutants is linked to oxidative stress and the subsequent development of neurological disease. In this study, the effects of copper, manganese, and mercury, were evaluated at X100 the World Health Organization safety limits for drinking water. Using a Sprague-Dawley rat model, following exposure for 28 days, the effects of these metals on biochemical blood parameters and tissue and cellular structure of the brain were determined. Biochemical analysis revealed no hepatocellular injury with minor changes associated with the hepatobiliary system. Minimal changes were found for renal function and the Na<sup>+</sup>/K<sup>+</sup> ratio was reduced in the copper and manganese (Cu + Mn) and copper, manganese, and mercury (Cu, Mn + Hg) groups that could affect neurological function. Light microscopy of the brain revealed abnormal histopathology of Purkinje cells in the cerebellum and pyramidal cells in the cerebrum as well as tissue damage and fibrosis of the surface blood vessels. Transmission electron microscopy of the cerebral neurons showed microscopic signs of axonal damage, chromatin condensation, the presence of indistinct nucleoli and mitochondrial damage. Together these cellular features suggest the presence and influence of oxidative stress. Exposure to these metals at X100 the safety limits, as part of mixtures, induces changes to neurological tissue that could adversely influence neurological functioning in the central nervous system.</p>","PeriodicalId":23430,"journal":{"name":"Ultrastructural Pathology","volume":" ","pages":"509-528"},"PeriodicalIF":1.1000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adverse neurological effects after exposure to copper, manganese, and mercury mixtures in a Spraque-Dawley rat model: an ultrastructural investigation.\",\"authors\":\"Maxine Draper, Megan Jean Bester, Mia-Jeanne Van Rooy, Hester Magdalena Oberholzer\",\"doi\":\"10.1080/01913123.2023.2270580\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Exposure to environmental metal pollutants is linked to oxidative stress and the subsequent development of neurological disease. In this study, the effects of copper, manganese, and mercury, were evaluated at X100 the World Health Organization safety limits for drinking water. Using a Sprague-Dawley rat model, following exposure for 28 days, the effects of these metals on biochemical blood parameters and tissue and cellular structure of the brain were determined. Biochemical analysis revealed no hepatocellular injury with minor changes associated with the hepatobiliary system. Minimal changes were found for renal function and the Na<sup>+</sup>/K<sup>+</sup> ratio was reduced in the copper and manganese (Cu + Mn) and copper, manganese, and mercury (Cu, Mn + Hg) groups that could affect neurological function. Light microscopy of the brain revealed abnormal histopathology of Purkinje cells in the cerebellum and pyramidal cells in the cerebrum as well as tissue damage and fibrosis of the surface blood vessels. Transmission electron microscopy of the cerebral neurons showed microscopic signs of axonal damage, chromatin condensation, the presence of indistinct nucleoli and mitochondrial damage. Together these cellular features suggest the presence and influence of oxidative stress. Exposure to these metals at X100 the safety limits, as part of mixtures, induces changes to neurological tissue that could adversely influence neurological functioning in the central nervous system.</p>\",\"PeriodicalId\":23430,\"journal\":{\"name\":\"Ultrastructural Pathology\",\"volume\":\" \",\"pages\":\"509-528\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ultrastructural Pathology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/01913123.2023.2270580\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"MICROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrastructural Pathology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/01913123.2023.2270580","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/30 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"MICROSCOPY","Score":null,"Total":0}
Adverse neurological effects after exposure to copper, manganese, and mercury mixtures in a Spraque-Dawley rat model: an ultrastructural investigation.
Exposure to environmental metal pollutants is linked to oxidative stress and the subsequent development of neurological disease. In this study, the effects of copper, manganese, and mercury, were evaluated at X100 the World Health Organization safety limits for drinking water. Using a Sprague-Dawley rat model, following exposure for 28 days, the effects of these metals on biochemical blood parameters and tissue and cellular structure of the brain were determined. Biochemical analysis revealed no hepatocellular injury with minor changes associated with the hepatobiliary system. Minimal changes were found for renal function and the Na+/K+ ratio was reduced in the copper and manganese (Cu + Mn) and copper, manganese, and mercury (Cu, Mn + Hg) groups that could affect neurological function. Light microscopy of the brain revealed abnormal histopathology of Purkinje cells in the cerebellum and pyramidal cells in the cerebrum as well as tissue damage and fibrosis of the surface blood vessels. Transmission electron microscopy of the cerebral neurons showed microscopic signs of axonal damage, chromatin condensation, the presence of indistinct nucleoli and mitochondrial damage. Together these cellular features suggest the presence and influence of oxidative stress. Exposure to these metals at X100 the safety limits, as part of mixtures, induces changes to neurological tissue that could adversely influence neurological functioning in the central nervous system.
期刊介绍:
Ultrastructural Pathology is the official journal of the Society for Ultrastructural Pathology. Published bimonthly, we are the only journal to be devoted entirely to diagnostic ultrastructural pathology.
Ultrastructural Pathology is the ideal journal to publish high-quality research on the following topics:
Advances in the uses of electron microscopic and immunohistochemical techniques
Correlations of ultrastructural data with light microscopy, histochemistry, immunohistochemistry, biochemistry, cell and tissue culturing, and electron probe analysis
Important new, investigative, clinical, and diagnostic EM methods.