{"title":"一种用于放射治疗皮肤标记的新型水性颜料标记物的开发和评价。","authors":"Shinichi Nakayama, Miduki Hirose, Soichiro Kaneshige, Kenji Nakamura, Yukinori Matsuo, Hajime Monzen","doi":"10.1007/s12194-023-00743-0","DOIUrl":null,"url":null,"abstract":"<p><p>Skin marks are widely used in external radiation therapy to ensure the accuracy of the irradiation position. However, conventional skin markers contain harmful substance, so we developed an alternative skin marker. The purpose of this study was to investigate the feasibility of using a novel water-based pigment marker comprising safe materials commonly used in cosmetics for clinical radiation therapy. We investigated various properties of the marker, namely marker longevity, color variety, line visibility, ink bleeding, and line durability, and improved the marker in response to the feel when drawing or being drawn on. The durability of the ink was evaluated by simultaneously applying the new marker and oil-based pen and comparing the period until the marks faded and became invisible. In clinical trial, we applied marks on the skin of 56 patients over three months to observe symptoms and visible changes in the skin. There were no complications of discomfort or pain, owing to the improvements in the marker tip. The marks drawn on the arms of volunteers with the new marker and the oil-based pen remained visible for a mean of 7.2 days and 3.6 days, respectively (P value < 0.001). The percentages of participants with no symptoms and no visible changes were 100%, respectively. We developed an alternative skin marker that complies with current regulatory standards by excluding crystal violet. The newly developed marker has features suitable for clinical use, such as resistance to smudging and water, marker tip shape and texture, and color variations.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development and evaluation of a novel water-based pigment marker for radiation therapy skin marking.\",\"authors\":\"Shinichi Nakayama, Miduki Hirose, Soichiro Kaneshige, Kenji Nakamura, Yukinori Matsuo, Hajime Monzen\",\"doi\":\"10.1007/s12194-023-00743-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Skin marks are widely used in external radiation therapy to ensure the accuracy of the irradiation position. However, conventional skin markers contain harmful substance, so we developed an alternative skin marker. The purpose of this study was to investigate the feasibility of using a novel water-based pigment marker comprising safe materials commonly used in cosmetics for clinical radiation therapy. We investigated various properties of the marker, namely marker longevity, color variety, line visibility, ink bleeding, and line durability, and improved the marker in response to the feel when drawing or being drawn on. The durability of the ink was evaluated by simultaneously applying the new marker and oil-based pen and comparing the period until the marks faded and became invisible. In clinical trial, we applied marks on the skin of 56 patients over three months to observe symptoms and visible changes in the skin. There were no complications of discomfort or pain, owing to the improvements in the marker tip. The marks drawn on the arms of volunteers with the new marker and the oil-based pen remained visible for a mean of 7.2 days and 3.6 days, respectively (P value < 0.001). The percentages of participants with no symptoms and no visible changes were 100%, respectively. We developed an alternative skin marker that complies with current regulatory standards by excluding crystal violet. The newly developed marker has features suitable for clinical use, such as resistance to smudging and water, marker tip shape and texture, and color variations.</p>\",\"PeriodicalId\":46252,\"journal\":{\"name\":\"Radiological Physics and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiological Physics and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12194-023-00743-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/10/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiological Physics and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12194-023-00743-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/15 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Development and evaluation of a novel water-based pigment marker for radiation therapy skin marking.
Skin marks are widely used in external radiation therapy to ensure the accuracy of the irradiation position. However, conventional skin markers contain harmful substance, so we developed an alternative skin marker. The purpose of this study was to investigate the feasibility of using a novel water-based pigment marker comprising safe materials commonly used in cosmetics for clinical radiation therapy. We investigated various properties of the marker, namely marker longevity, color variety, line visibility, ink bleeding, and line durability, and improved the marker in response to the feel when drawing or being drawn on. The durability of the ink was evaluated by simultaneously applying the new marker and oil-based pen and comparing the period until the marks faded and became invisible. In clinical trial, we applied marks on the skin of 56 patients over three months to observe symptoms and visible changes in the skin. There were no complications of discomfort or pain, owing to the improvements in the marker tip. The marks drawn on the arms of volunteers with the new marker and the oil-based pen remained visible for a mean of 7.2 days and 3.6 days, respectively (P value < 0.001). The percentages of participants with no symptoms and no visible changes were 100%, respectively. We developed an alternative skin marker that complies with current regulatory standards by excluding crystal violet. The newly developed marker has features suitable for clinical use, such as resistance to smudging and water, marker tip shape and texture, and color variations.
期刊介绍:
The purpose of the journal Radiological Physics and Technology is to provide a forum for sharing new knowledge related to research and development in radiological science and technology, including medical physics and radiological technology in diagnostic radiology, nuclear medicine, and radiation therapy among many other radiological disciplines, as well as to contribute to progress and improvement in medical practice and patient health care.