{"title":"OmicPredict:使用ANOVA萤火虫算法进行特征选择的组学数据预测框架。","authors":"Parampreet Kaur, Ashima Singh, Inderveer Chana","doi":"10.1080/10255842.2023.2268236","DOIUrl":null,"url":null,"abstract":"<p><p>High-throughput technologies and machine learning (ML), when applied to a huge pool of medical data such as omics data, result in efficient analysis. Recent research aims to apply and develop ML models to predict a disease well in time using available omics datasets. The present work proposed a framework, 'OmicPredict', deploying a hybrid feature selection method and deep neural network (DNN) model to predict multiple diseases using omics data. The hybrid feature selection method is developed using the Analysis of Variance (ANOVA) technique and firefly algorithm. The OmicPredict framework is applied to three case studies, Alzheimer's disease, Breast cancer, and Coronavirus disease 2019 (COVID-19). In the case study of Alzheimer's disease, the framework predicts patients using GSE33000 and GSE44770 dataset. In the case study of Breast cancer, the framework predicts human epidermal growth factor receptor 2 (HER2) subtype status using Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) dataset. In the case study of COVID-19, the framework performs patients' classification using GSE157103 dataset. The experimental results show that DNN model achieved an Area Under Curve (AUC) score of 0.949 for the Alzheimer's (GSE33000 and GSE44770) dataset. Furthermore, it achieved an AUC score of 0.987 and 0.989 for breast cancer (METABRIC) and COVID-19 (GSE157103) datasets, respectively, outperforming Random Forest, Naïve Bayes models, and the existing research.</p>","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"OmicPredict: a framework for omics data prediction using ANOVA-Firefly algorithm for feature selection.\",\"authors\":\"Parampreet Kaur, Ashima Singh, Inderveer Chana\",\"doi\":\"10.1080/10255842.2023.2268236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>High-throughput technologies and machine learning (ML), when applied to a huge pool of medical data such as omics data, result in efficient analysis. Recent research aims to apply and develop ML models to predict a disease well in time using available omics datasets. The present work proposed a framework, 'OmicPredict', deploying a hybrid feature selection method and deep neural network (DNN) model to predict multiple diseases using omics data. The hybrid feature selection method is developed using the Analysis of Variance (ANOVA) technique and firefly algorithm. The OmicPredict framework is applied to three case studies, Alzheimer's disease, Breast cancer, and Coronavirus disease 2019 (COVID-19). In the case study of Alzheimer's disease, the framework predicts patients using GSE33000 and GSE44770 dataset. In the case study of Breast cancer, the framework predicts human epidermal growth factor receptor 2 (HER2) subtype status using Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) dataset. In the case study of COVID-19, the framework performs patients' classification using GSE157103 dataset. The experimental results show that DNN model achieved an Area Under Curve (AUC) score of 0.949 for the Alzheimer's (GSE33000 and GSE44770) dataset. Furthermore, it achieved an AUC score of 0.987 and 0.989 for breast cancer (METABRIC) and COVID-19 (GSE157103) datasets, respectively, outperforming Random Forest, Naïve Bayes models, and the existing research.</p>\",\"PeriodicalId\":50640,\"journal\":{\"name\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10255842.2023.2268236\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/10/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10255842.2023.2268236","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/16 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
OmicPredict: a framework for omics data prediction using ANOVA-Firefly algorithm for feature selection.
High-throughput technologies and machine learning (ML), when applied to a huge pool of medical data such as omics data, result in efficient analysis. Recent research aims to apply and develop ML models to predict a disease well in time using available omics datasets. The present work proposed a framework, 'OmicPredict', deploying a hybrid feature selection method and deep neural network (DNN) model to predict multiple diseases using omics data. The hybrid feature selection method is developed using the Analysis of Variance (ANOVA) technique and firefly algorithm. The OmicPredict framework is applied to three case studies, Alzheimer's disease, Breast cancer, and Coronavirus disease 2019 (COVID-19). In the case study of Alzheimer's disease, the framework predicts patients using GSE33000 and GSE44770 dataset. In the case study of Breast cancer, the framework predicts human epidermal growth factor receptor 2 (HER2) subtype status using Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) dataset. In the case study of COVID-19, the framework performs patients' classification using GSE157103 dataset. The experimental results show that DNN model achieved an Area Under Curve (AUC) score of 0.949 for the Alzheimer's (GSE33000 and GSE44770) dataset. Furthermore, it achieved an AUC score of 0.987 and 0.989 for breast cancer (METABRIC) and COVID-19 (GSE157103) datasets, respectively, outperforming Random Forest, Naïve Bayes models, and the existing research.
期刊介绍:
The primary aims of Computer Methods in Biomechanics and Biomedical Engineering are to provide a means of communicating the advances being made in the areas of biomechanics and biomedical engineering and to stimulate interest in the continually emerging computer based technologies which are being applied in these multidisciplinary subjects. Computer Methods in Biomechanics and Biomedical Engineering will also provide a focus for the importance of integrating the disciplines of engineering with medical technology and clinical expertise. Such integration will have a major impact on health care in the future.