{"title":"使用优化的卷积神经网络和可解释的基于人工智能的分析进行语音病理检测。","authors":"Roohum Jegan, R Jayagowri","doi":"10.1080/10255842.2023.2270102","DOIUrl":null,"url":null,"abstract":"<p><p>This article proposes a noninvasive computer-aided assessment approach based on optimized convolutional neural network for healthy and pathological voice detection. Firstly, the input voice samples are first transformed into mel-spectrogram time-frequency visual representations and fed for training the CNN model. The time-frequency image captures inherent speech variations beneficial for healthy and pathological voice sample detection. The weights and biases of trained CNN network are further optimized using artificial bee colony (ABC) optimization algorithm resulting in optimum CNN network employed for testing unseen data. The proposed approach is evaluated using three popular and publicly available datasets: SVD, AVPD and VOICED. Experimental results emphasize that proposed ABC optimized CNN model shows improved accuracy performance by 1.02% compared to conventional CNN network illustrating data-independent discriminative representation ability. Finally, gradient-weighted class activation mapping (Grad-CAM) explainable artificial intelligence (XAI) is utilized to make the decision understandable.</p>","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":" ","pages":"2041-2057"},"PeriodicalIF":1.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Voice pathology detection using optimized convolutional neural networks and explainable artificial intelligence-based analysis.\",\"authors\":\"Roohum Jegan, R Jayagowri\",\"doi\":\"10.1080/10255842.2023.2270102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This article proposes a noninvasive computer-aided assessment approach based on optimized convolutional neural network for healthy and pathological voice detection. Firstly, the input voice samples are first transformed into mel-spectrogram time-frequency visual representations and fed for training the CNN model. The time-frequency image captures inherent speech variations beneficial for healthy and pathological voice sample detection. The weights and biases of trained CNN network are further optimized using artificial bee colony (ABC) optimization algorithm resulting in optimum CNN network employed for testing unseen data. The proposed approach is evaluated using three popular and publicly available datasets: SVD, AVPD and VOICED. Experimental results emphasize that proposed ABC optimized CNN model shows improved accuracy performance by 1.02% compared to conventional CNN network illustrating data-independent discriminative representation ability. Finally, gradient-weighted class activation mapping (Grad-CAM) explainable artificial intelligence (XAI) is utilized to make the decision understandable.</p>\",\"PeriodicalId\":50640,\"journal\":{\"name\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"volume\":\" \",\"pages\":\"2041-2057\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10255842.2023.2270102\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/10/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10255842.2023.2270102","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/18 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Voice pathology detection using optimized convolutional neural networks and explainable artificial intelligence-based analysis.
This article proposes a noninvasive computer-aided assessment approach based on optimized convolutional neural network for healthy and pathological voice detection. Firstly, the input voice samples are first transformed into mel-spectrogram time-frequency visual representations and fed for training the CNN model. The time-frequency image captures inherent speech variations beneficial for healthy and pathological voice sample detection. The weights and biases of trained CNN network are further optimized using artificial bee colony (ABC) optimization algorithm resulting in optimum CNN network employed for testing unseen data. The proposed approach is evaluated using three popular and publicly available datasets: SVD, AVPD and VOICED. Experimental results emphasize that proposed ABC optimized CNN model shows improved accuracy performance by 1.02% compared to conventional CNN network illustrating data-independent discriminative representation ability. Finally, gradient-weighted class activation mapping (Grad-CAM) explainable artificial intelligence (XAI) is utilized to make the decision understandable.
期刊介绍:
The primary aims of Computer Methods in Biomechanics and Biomedical Engineering are to provide a means of communicating the advances being made in the areas of biomechanics and biomedical engineering and to stimulate interest in the continually emerging computer based technologies which are being applied in these multidisciplinary subjects. Computer Methods in Biomechanics and Biomedical Engineering will also provide a focus for the importance of integrating the disciplines of engineering with medical technology and clinical expertise. Such integration will have a major impact on health care in the future.