麦芽糖的化学计量转化用于体外合成酶生物系统的生物制造。

Q2 Agricultural and Biological Sciences 生物设计研究(英文) Pub Date : 2022-07-01 eCollection Date: 2022-01-01 DOI:10.34133/2022/9806749
Guowei Li, Xinlei Wei, Ranran Wu, Wei Zhou, Yunjie Li, Zhiguang Zhu, Chun You
{"title":"麦芽糖的化学计量转化用于体外合成酶生物系统的生物制造。","authors":"Guowei Li,&nbsp;Xinlei Wei,&nbsp;Ranran Wu,&nbsp;Wei Zhou,&nbsp;Yunjie Li,&nbsp;Zhiguang Zhu,&nbsp;Chun You","doi":"10.34133/2022/9806749","DOIUrl":null,"url":null,"abstract":"<p><p>Maltose is a natural <i>α</i>-(1,4)-linked disaccharide with wide applications in food industries and microbial fermentation. However, maltose has scarcely been used for <i>in vitro</i> biosynthesis, possibly because its phosphorylation by maltose phosphorylase (MP) yields <i>β</i>-glucose 1-phosphate (<i>β</i>-G1P) that cannot be utilized by <i>α</i>-phosphoglucomutase (<i>α</i>-PGM) commonly found in <i>in vitro</i> synthetic enzymatic biosystems previously constructed by our group. Herein, we designed an <i>in vitro</i> synthetic enzymatic reaction module comprised of MP, <i>β</i>-phosphoglucomutase (<i>β</i>-PGM), and polyphosphate glucokinase (PPGK) for the stoichiometric conversion of each maltose molecule to two glucose 6-phosphate (G6P) molecules. Based on this synthetic module, we further constructed two <i>in vitro</i> synthetic biosystems to produce bioelectricity and fructose 1,6-diphosphate (FDP), respectively. The 14-enzyme biobattery achieved a Faraday efficiency of 96.4% and a maximal power density of 0.6 mW/cm<sup>2</sup>, whereas the 5-enzyme <i>in vitro</i> FDP-producing biosystem yielded 187.0 mM FDP from 50 g/L (139 mM) maltose by adopting a fed-batch substrate feeding strategy. Our study not only suggests new application scenarios for maltose but also provides novel strategies for the high-efficient production of bioelectricity and value-added biochemicals.</p>","PeriodicalId":56832,"journal":{"name":"生物设计研究(英文)","volume":"2022 ","pages":"9806749"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10521662/pdf/","citationCount":"2","resultStr":"{\"title\":\"Stoichiometric Conversion of Maltose for Biomanufacturing by <i>In Vitro</i> Synthetic Enzymatic Biosystems.\",\"authors\":\"Guowei Li,&nbsp;Xinlei Wei,&nbsp;Ranran Wu,&nbsp;Wei Zhou,&nbsp;Yunjie Li,&nbsp;Zhiguang Zhu,&nbsp;Chun You\",\"doi\":\"10.34133/2022/9806749\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Maltose is a natural <i>α</i>-(1,4)-linked disaccharide with wide applications in food industries and microbial fermentation. However, maltose has scarcely been used for <i>in vitro</i> biosynthesis, possibly because its phosphorylation by maltose phosphorylase (MP) yields <i>β</i>-glucose 1-phosphate (<i>β</i>-G1P) that cannot be utilized by <i>α</i>-phosphoglucomutase (<i>α</i>-PGM) commonly found in <i>in vitro</i> synthetic enzymatic biosystems previously constructed by our group. Herein, we designed an <i>in vitro</i> synthetic enzymatic reaction module comprised of MP, <i>β</i>-phosphoglucomutase (<i>β</i>-PGM), and polyphosphate glucokinase (PPGK) for the stoichiometric conversion of each maltose molecule to two glucose 6-phosphate (G6P) molecules. Based on this synthetic module, we further constructed two <i>in vitro</i> synthetic biosystems to produce bioelectricity and fructose 1,6-diphosphate (FDP), respectively. The 14-enzyme biobattery achieved a Faraday efficiency of 96.4% and a maximal power density of 0.6 mW/cm<sup>2</sup>, whereas the 5-enzyme <i>in vitro</i> FDP-producing biosystem yielded 187.0 mM FDP from 50 g/L (139 mM) maltose by adopting a fed-batch substrate feeding strategy. Our study not only suggests new application scenarios for maltose but also provides novel strategies for the high-efficient production of bioelectricity and value-added biochemicals.</p>\",\"PeriodicalId\":56832,\"journal\":{\"name\":\"生物设计研究(英文)\",\"volume\":\"2022 \",\"pages\":\"9806749\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10521662/pdf/\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"生物设计研究(英文)\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.34133/2022/9806749\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"生物设计研究(英文)","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.34133/2022/9806749","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 2

摘要

麦芽糖是一种天然的α-(1,4)连接二糖,在食品工业和微生物发酵中有着广泛的应用。然而,麦芽糖几乎没有被用于体外生物合成,可能是因为它被麦芽糖磷酸化酶(MP)磷酸化产生的β-葡萄糖1-磷酸(β-G1P)不能被我们小组先前构建的体外合成酶生物系统中常见的α-磷酸葡糖变位酶(α-PGM)利用。在此,我们设计了一个由MP、β-磷酸葡萄糖变位酶(β-PGM)和多磷酸葡萄糖激酶(PPGK)组成的体外合成酶促反应模块,用于将每个麦芽糖分子化学计量转化为两个葡萄糖-6-磷酸(G6P)分子。在这个合成模块的基础上,我们进一步构建了两个体外合成生物系统,分别产生生物电和1,6-二磷酸果糖(FDP)。14酶生物电池实现了96.4%的法拉第效率和0.6的最大功率密度 mW/cm2,而5-酶体外产生FDP的生物系统产生187.0 mM FDP,50 g/L(139 mM)麦芽糖。我们的研究不仅提出了麦芽糖的新应用场景,还为高效生产生物电和增值生物化学品提供了新的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stoichiometric Conversion of Maltose for Biomanufacturing by In Vitro Synthetic Enzymatic Biosystems.

Maltose is a natural α-(1,4)-linked disaccharide with wide applications in food industries and microbial fermentation. However, maltose has scarcely been used for in vitro biosynthesis, possibly because its phosphorylation by maltose phosphorylase (MP) yields β-glucose 1-phosphate (β-G1P) that cannot be utilized by α-phosphoglucomutase (α-PGM) commonly found in in vitro synthetic enzymatic biosystems previously constructed by our group. Herein, we designed an in vitro synthetic enzymatic reaction module comprised of MP, β-phosphoglucomutase (β-PGM), and polyphosphate glucokinase (PPGK) for the stoichiometric conversion of each maltose molecule to two glucose 6-phosphate (G6P) molecules. Based on this synthetic module, we further constructed two in vitro synthetic biosystems to produce bioelectricity and fructose 1,6-diphosphate (FDP), respectively. The 14-enzyme biobattery achieved a Faraday efficiency of 96.4% and a maximal power density of 0.6 mW/cm2, whereas the 5-enzyme in vitro FDP-producing biosystem yielded 187.0 mM FDP from 50 g/L (139 mM) maltose by adopting a fed-batch substrate feeding strategy. Our study not only suggests new application scenarios for maltose but also provides novel strategies for the high-efficient production of bioelectricity and value-added biochemicals.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
0
审稿时长
12 weeks
期刊最新文献
Erratum to "Multidimensional Optimization of Saccharomyces cerevisiae for Carotenoid Overproduction". Progress in the Metabolic Engineering of Yarrowia lipolytica for the Synthesis of Terpenes. Structural Bases of Dihydroxy Acid Dehydratase Inhibition and Biodesign for Self-Resistance. Next-Generation Tumor Targeting with Genetically Engineered Cell Membrane-Coated Nanoparticles. Microbial Cell Factories in the Bioeconomy Era: From Discovery to Creation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1