VOC图谱对非传染性疾病的适用性和诊断潜力。

IF 5 Q1 ENGINEERING, BIOMEDICAL BME frontiers Pub Date : 2023-01-10 eCollection Date: 2023-01-01 DOI:10.34133/bmef.0002
Micah Oxner, Allyson Trang, Jhalak Mehta, Christopher Forsyth, Barbara Swanson, Ali Keshavarzian, Abhinav Bhushan
{"title":"VOC图谱对非传染性疾病的适用性和诊断潜力。","authors":"Micah Oxner,&nbsp;Allyson Trang,&nbsp;Jhalak Mehta,&nbsp;Christopher Forsyth,&nbsp;Barbara Swanson,&nbsp;Ali Keshavarzian,&nbsp;Abhinav Bhushan","doi":"10.34133/bmef.0002","DOIUrl":null,"url":null,"abstract":"<p><p>A variety of volatile organic compounds (VOCs) are produced and emitted by the human body every day. The identity and concentration of these VOCs reflect an individual's metabolic condition. Information regarding the production and origin of VOCs, however, has yet to be congruent among the scientific community. This review article focuses on the recent investigations of the source and detection of biological VOCs as a potential for noninvasive discrimination between healthy and diseased individuals. Analyzing the changes in the components of VOC profiles could provide information regarding the molecular mechanisms behind disease as well as presenting new approaches for personalized screening and diagnosis. VOC research has prioritized the study of cancer, resulting in many research articles and reviews being written on the topic. This review summarizes the information gained about VOC cancer studies over the past 10 years and looks at how this knowledge correlates with and can be expanded to new and upcoming fields of VOC research, including neurodegenerative and other noninfectious diseases. Recent advances in analytical techniques have allowed for the analysis of VOCs measured in breath, urine, blood, feces, and skin. New diagnostic approaches founded on sensor-based techniques allow for cheaper and quicker results, and we compare their diagnostic dependability with gas chromatography- and mass spectrometry-based techniques. The future of VOC analysis as a clinical practice and the challenges associated with this transition are also discussed and future research priorities are summarized.</p>","PeriodicalId":72430,"journal":{"name":"BME frontiers","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2023-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10521665/pdf/","citationCount":"2","resultStr":"{\"title\":\"The Versatility and Diagnostic Potential of VOC Profiling for Noninfectious Diseases.\",\"authors\":\"Micah Oxner,&nbsp;Allyson Trang,&nbsp;Jhalak Mehta,&nbsp;Christopher Forsyth,&nbsp;Barbara Swanson,&nbsp;Ali Keshavarzian,&nbsp;Abhinav Bhushan\",\"doi\":\"10.34133/bmef.0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A variety of volatile organic compounds (VOCs) are produced and emitted by the human body every day. The identity and concentration of these VOCs reflect an individual's metabolic condition. Information regarding the production and origin of VOCs, however, has yet to be congruent among the scientific community. This review article focuses on the recent investigations of the source and detection of biological VOCs as a potential for noninvasive discrimination between healthy and diseased individuals. Analyzing the changes in the components of VOC profiles could provide information regarding the molecular mechanisms behind disease as well as presenting new approaches for personalized screening and diagnosis. VOC research has prioritized the study of cancer, resulting in many research articles and reviews being written on the topic. This review summarizes the information gained about VOC cancer studies over the past 10 years and looks at how this knowledge correlates with and can be expanded to new and upcoming fields of VOC research, including neurodegenerative and other noninfectious diseases. Recent advances in analytical techniques have allowed for the analysis of VOCs measured in breath, urine, blood, feces, and skin. New diagnostic approaches founded on sensor-based techniques allow for cheaper and quicker results, and we compare their diagnostic dependability with gas chromatography- and mass spectrometry-based techniques. The future of VOC analysis as a clinical practice and the challenges associated with this transition are also discussed and future research priorities are summarized.</p>\",\"PeriodicalId\":72430,\"journal\":{\"name\":\"BME frontiers\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2023-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10521665/pdf/\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BME frontiers\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.34133/bmef.0002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BME frontiers","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.34133/bmef.0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 2

摘要

人体每天都会产生和排放各种挥发性有机化合物。这些挥发性有机物的特性和浓度反映了个体的代谢状况。然而,关于挥发性有机物的产生和来源的信息在科学界尚未达成一致。这篇综述文章的重点是生物挥发性有机物的来源和检测的最新研究,这是一种在健康和患病个体之间进行无创区分的潜力。分析VOC图谱成分的变化可以提供有关疾病背后分子机制的信息,并为个性化筛查和诊断提供新的方法。VOC研究优先考虑癌症的研究,导致许多关于该主题的研究文章和评论被撰写。这篇综述总结了过去10年来获得的关于VOC癌症研究的信息,并探讨了这些知识如何与VOC研究的新领域和即将到来的领域相关,包括神经退行性疾病和其他非传染性疾病。分析技术的最新进展允许分析在呼吸、尿液、血液、粪便和皮肤中测量的挥发性有机物。基于传感器技术的新诊断方法可以获得更便宜、更快的结果,我们将其诊断可靠性与基于气相色谱和质谱的技术进行了比较。还讨论了VOC分析作为临床实践的未来以及与这一转变相关的挑战,并总结了未来的研究重点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Versatility and Diagnostic Potential of VOC Profiling for Noninfectious Diseases.

A variety of volatile organic compounds (VOCs) are produced and emitted by the human body every day. The identity and concentration of these VOCs reflect an individual's metabolic condition. Information regarding the production and origin of VOCs, however, has yet to be congruent among the scientific community. This review article focuses on the recent investigations of the source and detection of biological VOCs as a potential for noninvasive discrimination between healthy and diseased individuals. Analyzing the changes in the components of VOC profiles could provide information regarding the molecular mechanisms behind disease as well as presenting new approaches for personalized screening and diagnosis. VOC research has prioritized the study of cancer, resulting in many research articles and reviews being written on the topic. This review summarizes the information gained about VOC cancer studies over the past 10 years and looks at how this knowledge correlates with and can be expanded to new and upcoming fields of VOC research, including neurodegenerative and other noninfectious diseases. Recent advances in analytical techniques have allowed for the analysis of VOCs measured in breath, urine, blood, feces, and skin. New diagnostic approaches founded on sensor-based techniques allow for cheaper and quicker results, and we compare their diagnostic dependability with gas chromatography- and mass spectrometry-based techniques. The future of VOC analysis as a clinical practice and the challenges associated with this transition are also discussed and future research priorities are summarized.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.10
自引率
0.00%
发文量
0
审稿时长
16 weeks
期刊最新文献
A Janus Adhesive Hydrogel with Integrated Attack and Defense for Bacteria Killing and Antifouling. Cationized Decalcified Bone Matrix for Infected Bone Defect Treatment. Functional Neural Networks in Human Brain Organoids. What Is the Magical Cavitation Bubble: A Holistic Perspective to Trigger Advanced Bubbles, Nano-Sonocatalysts, and Cellular Sonosensitizers. Synergistic Assembly of 1DZnO and Anti-CYFRA 21-1: A Physicochemical Approach to Optical Biosensing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1