Robin Y Engel, Oliver Alexander, Kaan Atak, Uwe Bovensiepen, Jens Buck, Robert Carley, Michele Cascella, Valentin Chardonnet, Gheorghe Sorin Chiuzbaian, Christian David, Florian Döring, Andrea Eschenlohr, Natalia Gerasimova, Frank de Groot, Loïc Le Guyader, Oliver S Humphries, Manuel Izquierdo, Emmanuelle Jal, Adam Kubec, Tim Laarmann, Charles-Henri Lambert, Jan Lüning, Jonathan P Marangos, Laurent Mercadier, Giuseppe Mercurio, Piter S Miedema, Katharina Ollefs, Bastian Pfau, Benedikt Rösner, Kai Rossnagel, Nico Rothenbach, Andreas Scherz, Justine Schlappa, Markus Scholz, Jan O Schunck, Kiana Setoodehnia, Christian Stamm, Simone Techert, Sam M Vinko, Heiko Wende, Alexander A Yaroslavtsev, Zhong Yin, Martin Beye
{"title":"自由电子激光下镍共振非线性x射线吸收中的电子布居动力学。","authors":"Robin Y Engel, Oliver Alexander, Kaan Atak, Uwe Bovensiepen, Jens Buck, Robert Carley, Michele Cascella, Valentin Chardonnet, Gheorghe Sorin Chiuzbaian, Christian David, Florian Döring, Andrea Eschenlohr, Natalia Gerasimova, Frank de Groot, Loïc Le Guyader, Oliver S Humphries, Manuel Izquierdo, Emmanuelle Jal, Adam Kubec, Tim Laarmann, Charles-Henri Lambert, Jan Lüning, Jonathan P Marangos, Laurent Mercadier, Giuseppe Mercurio, Piter S Miedema, Katharina Ollefs, Bastian Pfau, Benedikt Rösner, Kai Rossnagel, Nico Rothenbach, Andreas Scherz, Justine Schlappa, Markus Scholz, Jan O Schunck, Kiana Setoodehnia, Christian Stamm, Simone Techert, Sam M Vinko, Heiko Wende, Alexander A Yaroslavtsev, Zhong Yin, Martin Beye","doi":"10.1063/4.0000206","DOIUrl":null,"url":null,"abstract":"<p><p>Free-electron lasers provide bright, ultrashort, and monochromatic x-ray pulses, enabling novel spectroscopic measurements not only with femtosecond temporal resolution: The high fluence of their x-ray pulses can also easily enter the regime of the non-linear x-ray-matter interaction. Entering this regime necessitates a rigorous analysis and reliable prediction of the relevant non-linear processes for future experiment designs. Here, we show non-linear changes in the <math><mrow><msub><mi>L</mi><mn>3</mn></msub></mrow></math>-edge absorption of metallic nickel thin films, measured with fluences up to 60 J/cm<sup>2</sup>. We present a simple but predictive rate model that quantitatively describes spectral changes based on the evolution of electronic populations within the pulse duration. Despite its simplicity, the model reaches good agreement with experimental results over more than three orders of magnitude in fluence, while providing a straightforward understanding of the interplay of physical processes driving the non-linear changes. Our findings provide important insights for the design and evaluation of future high-fluence free-electron laser experiments and contribute to the understanding of non-linear electron dynamics in x-ray absorption processes in solids at the femtosecond timescale.</p>","PeriodicalId":48683,"journal":{"name":"Structural Dynamics-Us","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10576398/pdf/","citationCount":"0","resultStr":"{\"title\":\"Electron population dynamics in resonant non-linear x-ray absorption in nickel at a free-electron laser.\",\"authors\":\"Robin Y Engel, Oliver Alexander, Kaan Atak, Uwe Bovensiepen, Jens Buck, Robert Carley, Michele Cascella, Valentin Chardonnet, Gheorghe Sorin Chiuzbaian, Christian David, Florian Döring, Andrea Eschenlohr, Natalia Gerasimova, Frank de Groot, Loïc Le Guyader, Oliver S Humphries, Manuel Izquierdo, Emmanuelle Jal, Adam Kubec, Tim Laarmann, Charles-Henri Lambert, Jan Lüning, Jonathan P Marangos, Laurent Mercadier, Giuseppe Mercurio, Piter S Miedema, Katharina Ollefs, Bastian Pfau, Benedikt Rösner, Kai Rossnagel, Nico Rothenbach, Andreas Scherz, Justine Schlappa, Markus Scholz, Jan O Schunck, Kiana Setoodehnia, Christian Stamm, Simone Techert, Sam M Vinko, Heiko Wende, Alexander A Yaroslavtsev, Zhong Yin, Martin Beye\",\"doi\":\"10.1063/4.0000206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Free-electron lasers provide bright, ultrashort, and monochromatic x-ray pulses, enabling novel spectroscopic measurements not only with femtosecond temporal resolution: The high fluence of their x-ray pulses can also easily enter the regime of the non-linear x-ray-matter interaction. Entering this regime necessitates a rigorous analysis and reliable prediction of the relevant non-linear processes for future experiment designs. Here, we show non-linear changes in the <math><mrow><msub><mi>L</mi><mn>3</mn></msub></mrow></math>-edge absorption of metallic nickel thin films, measured with fluences up to 60 J/cm<sup>2</sup>. We present a simple but predictive rate model that quantitatively describes spectral changes based on the evolution of electronic populations within the pulse duration. Despite its simplicity, the model reaches good agreement with experimental results over more than three orders of magnitude in fluence, while providing a straightforward understanding of the interplay of physical processes driving the non-linear changes. Our findings provide important insights for the design and evaluation of future high-fluence free-electron laser experiments and contribute to the understanding of non-linear electron dynamics in x-ray absorption processes in solids at the femtosecond timescale.</p>\",\"PeriodicalId\":48683,\"journal\":{\"name\":\"Structural Dynamics-Us\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10576398/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Dynamics-Us\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/4.0000206\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Dynamics-Us","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/4.0000206","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Electron population dynamics in resonant non-linear x-ray absorption in nickel at a free-electron laser.
Free-electron lasers provide bright, ultrashort, and monochromatic x-ray pulses, enabling novel spectroscopic measurements not only with femtosecond temporal resolution: The high fluence of their x-ray pulses can also easily enter the regime of the non-linear x-ray-matter interaction. Entering this regime necessitates a rigorous analysis and reliable prediction of the relevant non-linear processes for future experiment designs. Here, we show non-linear changes in the -edge absorption of metallic nickel thin films, measured with fluences up to 60 J/cm2. We present a simple but predictive rate model that quantitatively describes spectral changes based on the evolution of electronic populations within the pulse duration. Despite its simplicity, the model reaches good agreement with experimental results over more than three orders of magnitude in fluence, while providing a straightforward understanding of the interplay of physical processes driving the non-linear changes. Our findings provide important insights for the design and evaluation of future high-fluence free-electron laser experiments and contribute to the understanding of non-linear electron dynamics in x-ray absorption processes in solids at the femtosecond timescale.
Structural Dynamics-UsCHEMISTRY, PHYSICALPHYSICS, ATOMIC, MOLECU-PHYSICS, ATOMIC, MOLECULAR & CHEMICAL
CiteScore
5.50
自引率
3.60%
发文量
24
审稿时长
16 weeks
期刊介绍:
Structural Dynamics focuses on the recent developments in experimental and theoretical methods and techniques that allow a visualization of the electronic and geometric structural changes in real time of chemical, biological, and condensed-matter systems. The community of scientists and engineers working on structural dynamics in such diverse systems often use similar instrumentation and methods.
The journal welcomes articles dealing with fundamental problems of electronic and structural dynamics that are tackled by new methods, such as:
Time-resolved X-ray and electron diffraction and scattering,
Coherent diffractive imaging,
Time-resolved X-ray spectroscopies (absorption, emission, resonant inelastic scattering, etc.),
Time-resolved electron energy loss spectroscopy (EELS) and electron microscopy,
Time-resolved photoelectron spectroscopies (UPS, XPS, ARPES, etc.),
Multidimensional spectroscopies in the infrared, the visible and the ultraviolet,
Nonlinear spectroscopies in the VUV, the soft and the hard X-ray domains,
Theory and computational methods and algorithms for the analysis and description of structuraldynamics and their associated experimental signals.
These new methods are enabled by new instrumentation, such as:
X-ray free electron lasers, which provide flux, coherence, and time resolution,
New sources of ultrashort electron pulses,
New sources of ultrashort vacuum ultraviolet (VUV) to hard X-ray pulses, such as high-harmonic generation (HHG) sources or plasma-based sources,
New sources of ultrashort infrared and terahertz (THz) radiation,
New detectors for X-rays and electrons,
New sample handling and delivery schemes,
New computational capabilities.