Saurabh Panwar, Vivek Kumar, P. K. Kapur, Ompal Singh
{"title":"软件可靠性预测和发布时间管理","authors":"Saurabh Panwar, Vivek Kumar, P. K. Kapur, Ompal Singh","doi":"10.1108/ijqrm-05-2021-0139","DOIUrl":null,"url":null,"abstract":"PurposeSoftware testing is needed to produce extremely reliable software products. A crucial decision problem that the software developer encounters is to ascertain when to terminate the testing process and when to release the software system in the market. With the growing need to deliver quality software, the critical assessment of reliability, cost of testing and release time strategy is requisite for project managers. This study seeks to examine the reliability of the software system by proposing a generalized testing coverage-based software reliability growth model (SRGM) that incorporates the effect of testing efforts and change point. Moreover, the strategic software time-to-market policy based on costreliability criteria is suggested.Design/methodology/approachThe fault detection process is modeled as a composite function of testing coverage, testing efforts and the continuation time of the testing process. Also, to assimilate factual scenarios, the current research exhibits the influence of software users refer as reporters in the fault detection process. Thus, this study models the reliability growth phenomenon by integrating the number of reporters and the number of instructions executed in the field environment. Besides, it is presumed that the managers release the software early to capture maximum market share and continue the testing process for an added period in the user environment. The multiattribute utility theory (MAUT) is applied to solve the optimization model with release time and testing termination time as two decision variables.FindingsThe practical applicability and performance of the proposed methodology are demonstrated through real-life software failure data. The findings of the empirical analysis have shown the superiority of the present study as compared to conventional approaches.Originality/valueThis study is the first attempt to assimilate testing coverage phenomenon in joint optimization of software time to market and testing duration.","PeriodicalId":14193,"journal":{"name":"International Journal of Quality & Reliability Management","volume":"53 9","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2021-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Software reliability prediction and release time management with coverage\",\"authors\":\"Saurabh Panwar, Vivek Kumar, P. K. Kapur, Ompal Singh\",\"doi\":\"10.1108/ijqrm-05-2021-0139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PurposeSoftware testing is needed to produce extremely reliable software products. A crucial decision problem that the software developer encounters is to ascertain when to terminate the testing process and when to release the software system in the market. With the growing need to deliver quality software, the critical assessment of reliability, cost of testing and release time strategy is requisite for project managers. This study seeks to examine the reliability of the software system by proposing a generalized testing coverage-based software reliability growth model (SRGM) that incorporates the effect of testing efforts and change point. Moreover, the strategic software time-to-market policy based on costreliability criteria is suggested.Design/methodology/approachThe fault detection process is modeled as a composite function of testing coverage, testing efforts and the continuation time of the testing process. Also, to assimilate factual scenarios, the current research exhibits the influence of software users refer as reporters in the fault detection process. Thus, this study models the reliability growth phenomenon by integrating the number of reporters and the number of instructions executed in the field environment. Besides, it is presumed that the managers release the software early to capture maximum market share and continue the testing process for an added period in the user environment. The multiattribute utility theory (MAUT) is applied to solve the optimization model with release time and testing termination time as two decision variables.FindingsThe practical applicability and performance of the proposed methodology are demonstrated through real-life software failure data. The findings of the empirical analysis have shown the superiority of the present study as compared to conventional approaches.Originality/valueThis study is the first attempt to assimilate testing coverage phenomenon in joint optimization of software time to market and testing duration.\",\"PeriodicalId\":14193,\"journal\":{\"name\":\"International Journal of Quality & Reliability Management\",\"volume\":\"53 9\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2021-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Quality & Reliability Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/ijqrm-05-2021-0139\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MANAGEMENT\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Quality & Reliability Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ijqrm-05-2021-0139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MANAGEMENT","Score":null,"Total":0}
Software reliability prediction and release time management with coverage
PurposeSoftware testing is needed to produce extremely reliable software products. A crucial decision problem that the software developer encounters is to ascertain when to terminate the testing process and when to release the software system in the market. With the growing need to deliver quality software, the critical assessment of reliability, cost of testing and release time strategy is requisite for project managers. This study seeks to examine the reliability of the software system by proposing a generalized testing coverage-based software reliability growth model (SRGM) that incorporates the effect of testing efforts and change point. Moreover, the strategic software time-to-market policy based on costreliability criteria is suggested.Design/methodology/approachThe fault detection process is modeled as a composite function of testing coverage, testing efforts and the continuation time of the testing process. Also, to assimilate factual scenarios, the current research exhibits the influence of software users refer as reporters in the fault detection process. Thus, this study models the reliability growth phenomenon by integrating the number of reporters and the number of instructions executed in the field environment. Besides, it is presumed that the managers release the software early to capture maximum market share and continue the testing process for an added period in the user environment. The multiattribute utility theory (MAUT) is applied to solve the optimization model with release time and testing termination time as two decision variables.FindingsThe practical applicability and performance of the proposed methodology are demonstrated through real-life software failure data. The findings of the empirical analysis have shown the superiority of the present study as compared to conventional approaches.Originality/valueThis study is the first attempt to assimilate testing coverage phenomenon in joint optimization of software time to market and testing duration.
期刊介绍:
In today''s competitive business and industrial environment, it is essential to have an academic journal offering the most current theoretical knowledge on quality and reliability to ensure that top management is fully conversant with new thinking, techniques and developments in the field. The International Journal of Quality & Reliability Management (IJQRM) deals with all aspects of business improvements and with all aspects of manufacturing and services, from the training of (senior) managers, to innovations in organising and processing to raise standards of product and service quality. It is this unique blend of theoretical knowledge and managerial relevance that makes IJQRM a valuable resource for managers striving for higher standards.Coverage includes: -Reliability, availability & maintenance -Gauging, calibration & measurement -Life cycle costing & sustainability -Reliability Management of Systems -Service Quality -Green Marketing -Product liability -Product testing techniques & systems -Quality function deployment -Reliability & quality education & training -Productivity improvement -Performance improvement -(Regulatory) standards for quality & Quality Awards -Statistical process control -System modelling -Teamwork -Quality data & datamining