信用评分与集成深度学习分类方法——与传统方法的比较

O. Radović, Srđan Marinković, Jelena Radojičić
{"title":"信用评分与集成深度学习分类方法——与传统方法的比较","authors":"O. Radović, Srđan Marinković, Jelena Radojičić","doi":"10.22190/FUEO201028001R","DOIUrl":null,"url":null,"abstract":"Credit scoring attracts special attention of financial institutions. In recent years, deep learning methods have been particularly interesting. In this paper, we compare the performance of ensemble deep learning methods based on decision trees with the best traditional method, logistic regression, and the machine learning method benchmark, support vector machines. Each method tests several different algorithms. We use different performance indicators. The research focuses on standard datasets relevant for this type of classification, the Australian and German datasets. The best method, according to the MCC indicator, proves to be the ensemble method with boosted decision trees. Also, on average, ensemble methods prove to be more successful than SVM.","PeriodicalId":31607,"journal":{"name":"Facta Universitatis Series Economics and Organization","volume":"11 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Credit scoring with an ensemble deep learning classification methods – comparison with tradicional methods\",\"authors\":\"O. Radović, Srđan Marinković, Jelena Radojičić\",\"doi\":\"10.22190/FUEO201028001R\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Credit scoring attracts special attention of financial institutions. In recent years, deep learning methods have been particularly interesting. In this paper, we compare the performance of ensemble deep learning methods based on decision trees with the best traditional method, logistic regression, and the machine learning method benchmark, support vector machines. Each method tests several different algorithms. We use different performance indicators. The research focuses on standard datasets relevant for this type of classification, the Australian and German datasets. The best method, according to the MCC indicator, proves to be the ensemble method with boosted decision trees. Also, on average, ensemble methods prove to be more successful than SVM.\",\"PeriodicalId\":31607,\"journal\":{\"name\":\"Facta Universitatis Series Economics and Organization\",\"volume\":\"11 8\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Facta Universitatis Series Economics and Organization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22190/FUEO201028001R\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Facta Universitatis Series Economics and Organization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22190/FUEO201028001R","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

信用评分引起了金融机构的特别关注。近年来,深度学习方法特别有趣。在本文中,我们将基于决策树的集成深度学习方法与最佳传统方法逻辑回归和机器学习方法基准支持向量机的性能进行了比较。每种方法都测试几种不同的算法。我们使用不同的绩效指标。这项研究的重点是与这类分类相关的标准数据集,即澳大利亚和德国的数据集。根据MCC指标,证明最佳方法是具有增强决策树的集成方法。此外,平均而言,集成方法被证明比SVM更成功。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Credit scoring with an ensemble deep learning classification methods – comparison with tradicional methods
Credit scoring attracts special attention of financial institutions. In recent years, deep learning methods have been particularly interesting. In this paper, we compare the performance of ensemble deep learning methods based on decision trees with the best traditional method, logistic regression, and the machine learning method benchmark, support vector machines. Each method tests several different algorithms. We use different performance indicators. The research focuses on standard datasets relevant for this type of classification, the Australian and German datasets. The best method, according to the MCC indicator, proves to be the ensemble method with boosted decision trees. Also, on average, ensemble methods prove to be more successful than SVM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
6
审稿时长
8 weeks
期刊最新文献
THE IMPACT OF CORPORATE INCOME TAX ON FDI INFLOW IN EMERGING EU ECONOMIES FACTORS THAT AFFECT EMPLOYMENT DECISION OF FUTURE HEALTHCARE PROFESSIONALS IN SERBIA IMPACT OF LEARNING ORIENTATION ON COMPANY PERFORMANCE: MEDIATING ROLE OF INNOVATIVENESS LONG-RANGE CORRELATIONS AND CRYPTOCURRENCY MARKET EFFICIENCY SOCIAL INFLATION IN MTPL INSURANCE
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1