CK-Encoder:句子相似度的增强语言表示

Q2 Decision Sciences International Journal of Crowd Science Pub Date : 2022-04-15 DOI:10.26599/IJCS.2022.9100001
Tao Jiang;Fengjian Kang;Wei Guo;Wei He;Lei Liu;Xudong Lu;Yonghui Xu;Lizhen Cui
{"title":"CK-Encoder:句子相似度的增强语言表示","authors":"Tao Jiang;Fengjian Kang;Wei Guo;Wei He;Lei Liu;Xudong Lu;Yonghui Xu;Lizhen Cui","doi":"10.26599/IJCS.2022.9100001","DOIUrl":null,"url":null,"abstract":"In recent years, neural networks have been widely used in natural language processing, especially in sentence similarity modeling. Most of the previous studies focused on the current sentence, ignoring the commonsense knowledge related to the current sentence in the task of sentence similarity modeling. Commonsense knowledge can be remarkably useful for understanding the semantics of sentences. CK-Encoder, which can effectively acquire commonsense knowledge to improve the performance of sentence similarity modeling, is proposed in this paper. Specifically, the model first generates a commonsense knowledge graph of the input sentence and calculates this graph by using the graph convolution network. In addition, CKER, a framework combining CK-Encoder and sentence encoder, is introduced. Experiments on two sentence similarity tasks have demonstrated that CK-Encoder can effectively acquire commonsense knowledge to improve the capability of a model to understand sentences.","PeriodicalId":32381,"journal":{"name":"International Journal of Crowd Science","volume":"6 1","pages":"17-22"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/9736195/9745472/09758661.pdf","citationCount":"1","resultStr":"{\"title\":\"CK-Encoder: Enhanced Language Representation for Sentence Similarity\",\"authors\":\"Tao Jiang;Fengjian Kang;Wei Guo;Wei He;Lei Liu;Xudong Lu;Yonghui Xu;Lizhen Cui\",\"doi\":\"10.26599/IJCS.2022.9100001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, neural networks have been widely used in natural language processing, especially in sentence similarity modeling. Most of the previous studies focused on the current sentence, ignoring the commonsense knowledge related to the current sentence in the task of sentence similarity modeling. Commonsense knowledge can be remarkably useful for understanding the semantics of sentences. CK-Encoder, which can effectively acquire commonsense knowledge to improve the performance of sentence similarity modeling, is proposed in this paper. Specifically, the model first generates a commonsense knowledge graph of the input sentence and calculates this graph by using the graph convolution network. In addition, CKER, a framework combining CK-Encoder and sentence encoder, is introduced. Experiments on two sentence similarity tasks have demonstrated that CK-Encoder can effectively acquire commonsense knowledge to improve the capability of a model to understand sentences.\",\"PeriodicalId\":32381,\"journal\":{\"name\":\"International Journal of Crowd Science\",\"volume\":\"6 1\",\"pages\":\"17-22\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/iel7/9736195/9745472/09758661.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Crowd Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9758661/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Decision Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Crowd Science","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9758661/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 1

摘要

近年来,神经网络在自然语言处理中得到了广泛的应用,尤其是在句子相似性建模中。以往的研究大多集中在当前句子上,在句子相似性建模任务中忽略了与当前句子相关的常识性知识。常识知识对于理解句子的语义非常有用。本文提出了CK编码器,它可以有效地获取常识知识,提高句子相似性建模的性能。具体地,该模型首先生成输入句子的常识知识图,并通过使用图卷积网络来计算该图。此外,还介绍了CKER,一个结合了CK编码器和句子编码器的框架。在两个句子相似性任务上的实验表明,CK编码器可以有效地获取常识知识,提高模型理解句子的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CK-Encoder: Enhanced Language Representation for Sentence Similarity
In recent years, neural networks have been widely used in natural language processing, especially in sentence similarity modeling. Most of the previous studies focused on the current sentence, ignoring the commonsense knowledge related to the current sentence in the task of sentence similarity modeling. Commonsense knowledge can be remarkably useful for understanding the semantics of sentences. CK-Encoder, which can effectively acquire commonsense knowledge to improve the performance of sentence similarity modeling, is proposed in this paper. Specifically, the model first generates a commonsense knowledge graph of the input sentence and calculates this graph by using the graph convolution network. In addition, CKER, a framework combining CK-Encoder and sentence encoder, is introduced. Experiments on two sentence similarity tasks have demonstrated that CK-Encoder can effectively acquire commonsense knowledge to improve the capability of a model to understand sentences.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Crowd Science
International Journal of Crowd Science Decision Sciences-Decision Sciences (miscellaneous)
CiteScore
2.70
自引率
0.00%
发文量
20
审稿时长
24 weeks
期刊最新文献
Contents Front Cover Improving Energy Harvesting System from Ambient RF Sources in Social Systems with Overcrowding Editorial of Cyber-Physical Social Systems and Smart Environments CGLS Method for Efficient Equalization of OFDM Systems Under Doubly Dispersive Fading Channels with an Application Into 6G Communications in Smart Overcrowded
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1