非对称损失函数密度预测的正确评分规则

IF 2.9 2区 数学 Q1 ECONOMICS Journal of Business & Economic Statistics Pub Date : 2022-02-02 DOI:10.1080/07350015.2022.2035229
Matteo Iacopini, F. Ravazzolo, L. Rossini
{"title":"非对称损失函数密度预测的正确评分规则","authors":"Matteo Iacopini, F. Ravazzolo, L. Rossini","doi":"10.1080/07350015.2022.2035229","DOIUrl":null,"url":null,"abstract":"Abstract This article proposes a novel asymmetric continuous probabilistic score (ACPS) for evaluating and comparing density forecasts. It generalizes the proposed score and defines a weighted version, which emphasizes regions of interest, such as the tails or the center of a variable’s range. The (weighted) ACPS extends the symmetric (weighted) CRPS by allowing for asymmetries in the preferences underlying the scoring rule. A test is used to statistically compare the predictive ability of different forecasts. The ACPS is of general use in any situation where the decision-maker has asymmetric preferences in the evaluation of the forecasts. In an artificial experiment, the implications of varying the level of asymmetry in the ACPS are illustrated. Then, the proposed score and test are applied to assess and compare density forecasts of macroeconomic relevant datasets (U.S. employment growth) and of commodity prices (oil and electricity prices) with particular focus on the recent COVID-19 crisis period.","PeriodicalId":50247,"journal":{"name":"Journal of Business & Economic Statistics","volume":"121 2‐3","pages":"482 - 496"},"PeriodicalIF":2.9000,"publicationDate":"2022-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Proper Scoring Rules for Evaluating Density Forecasts with Asymmetric Loss Functions\",\"authors\":\"Matteo Iacopini, F. Ravazzolo, L. Rossini\",\"doi\":\"10.1080/07350015.2022.2035229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This article proposes a novel asymmetric continuous probabilistic score (ACPS) for evaluating and comparing density forecasts. It generalizes the proposed score and defines a weighted version, which emphasizes regions of interest, such as the tails or the center of a variable’s range. The (weighted) ACPS extends the symmetric (weighted) CRPS by allowing for asymmetries in the preferences underlying the scoring rule. A test is used to statistically compare the predictive ability of different forecasts. The ACPS is of general use in any situation where the decision-maker has asymmetric preferences in the evaluation of the forecasts. In an artificial experiment, the implications of varying the level of asymmetry in the ACPS are illustrated. Then, the proposed score and test are applied to assess and compare density forecasts of macroeconomic relevant datasets (U.S. employment growth) and of commodity prices (oil and electricity prices) with particular focus on the recent COVID-19 crisis period.\",\"PeriodicalId\":50247,\"journal\":{\"name\":\"Journal of Business & Economic Statistics\",\"volume\":\"121 2‐3\",\"pages\":\"482 - 496\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2022-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Business & Economic Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/07350015.2022.2035229\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Business & Economic Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/07350015.2022.2035229","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 1

摘要

摘要本文提出了一种新的非对称连续概率评分(ACPS),用于评估和比较密度预测。它概括了所提出的分数,并定义了一个加权版本,该版本强调感兴趣的区域,如变量范围的尾部或中心。(加权)ACPS通过允许评分规则下的偏好的不对称性来扩展对称(加权)CRPS。测试用于统计比较不同预测的预测能力。ACPS在决策者对预测的评估中存在不对称偏好的任何情况下都具有通用性。在一个人工实验中,说明了改变ACPS中不对称水平的含义。然后,应用所提出的分数和测试来评估和比较宏观经济相关数据集(美国就业增长)和大宗商品价格(石油和电力价格)的密度预测,特别关注最近的新冠肺炎危机时期。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Proper Scoring Rules for Evaluating Density Forecasts with Asymmetric Loss Functions
Abstract This article proposes a novel asymmetric continuous probabilistic score (ACPS) for evaluating and comparing density forecasts. It generalizes the proposed score and defines a weighted version, which emphasizes regions of interest, such as the tails or the center of a variable’s range. The (weighted) ACPS extends the symmetric (weighted) CRPS by allowing for asymmetries in the preferences underlying the scoring rule. A test is used to statistically compare the predictive ability of different forecasts. The ACPS is of general use in any situation where the decision-maker has asymmetric preferences in the evaluation of the forecasts. In an artificial experiment, the implications of varying the level of asymmetry in the ACPS are illustrated. Then, the proposed score and test are applied to assess and compare density forecasts of macroeconomic relevant datasets (U.S. employment growth) and of commodity prices (oil and electricity prices) with particular focus on the recent COVID-19 crisis period.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Business & Economic Statistics
Journal of Business & Economic Statistics 数学-统计学与概率论
CiteScore
5.00
自引率
6.70%
发文量
98
审稿时长
>12 weeks
期刊介绍: The Journal of Business and Economic Statistics (JBES) publishes a range of articles, primarily applied statistical analyses of microeconomic, macroeconomic, forecasting, business, and finance related topics. More general papers in statistics, econometrics, computation, simulation, or graphics are also appropriate if they are immediately applicable to the journal''s general topics of interest. Articles published in JBES contain significant results, high-quality methodological content, excellent exposition, and usually include a substantive empirical application.
期刊最新文献
A Ridge-Regularized Jackknifed Anderson-Rubin Test. Efficient and Robust Estimation of the Generalized LATE Model Modeling and Forecasting Macroeconomic Downside Risk* Causal inference under outcome-based sampling with monotonicity assumptions Functional-Coefficient Quantile Regression for Panel Data with Latent Group Structure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1